Parallel Batch-Dynamic *k*-Core Decomposition

Julian Shun (MIT CSAIL)

Joint work with Quanquan Liu, Jessica Shi, Shangdi Yu, and Laxman Dhulipala

Graphs are becoming very large

<u>Size</u>

Common Crawl

3.5 billion vertices128 billion edges

Largest publicly available graph

272 billion vertices5.9 trillion edges

Proprietary graph

Google

> 100 billion vertices6 trillion edges

Proprietary graph

Graphs are rapidly changing (500M tweets/day, 547K new websites/day)

Parallelism and Dynamic Algorithms for High Performance

 Take advantage of parallel machines

 Design dynamic algorithms to avoid unnecessary work on updates

Parallel Batch-Dynamic Algorithms

Process updates in batches, and use parallelism within each batch

A **batch** of edge insertions/deletions

Current graph + Current statistics

Updated graph + Updated statistics

Our Parallel Batch-Dynamic Algorithms

k-core decomposition

Clique counting Low out-degree orientation Maximal matching Graph coloring Minimum spanning forest Single-linkage clustering Closest pair

Theory

Practice

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, *"Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,"* SPAA 2022

k-Core Decomposition

k-Core Decomposition

k-core: maximal connected subgraph of G such that all vertices have induced degree $\geq k$

Coreness(v): largest value of *k* such that v participates in the *k*-core

Goal: compute coreness for all vertices

Approximate *k*-Core Decomposition

k-core: maximal connected subgraph of G such that all vertices have induced degree $\geq k$

c-Approx-Coreness(v): value within multiplicative *c* factor of Coreness(v)

Applications of *k*-core Decomposition

- Graph clustering
- Community detection
- Graph visualization
- Approximating network centrality

Our Results for k-core Decomposition

- Our algorithm dynamically maintains a $(2 + \epsilon)$ approximation for coreness of every vertex
- A batch of B updates takes O(B log² n) amortized work and polylogarithmic span (parallel time) with high probability
- Our algorithm is work-efficient, matching the work of the state-of-the-art sequential algorithm by Sun et al.
- Our algorithm is based a **parallel level data structure**

 Described by Bhattacharya et al. [STOC 2015] and Henzinger et al. [2020]

- Maintain invariants per vertex, which give upper/lower bounds on roughly its number of "up-neighbors" (neighbors at around its level and above)
- We prove that levels translate to coreness estimates

Deletions

Only the lower bound invariant is ever violated.

Vertices only need to move down, and never up

Deletions

Only the lower bound invariant is ever violated.

For vertices incident to updated edges, calculate *desirelevel (dl)*: closest level that satisfies invariants

11 10 9 8 7 6 5 4 3 2 1

Iterate from bottommost level to top level and move vertices to desire-level

Only the lower bound invariant is ever violated.

Deletions

For vertices incident to updated edges, calculate *desirelevel (dl)*: closest level that satisfies invariants

For vertices incident

to updated edges,

calculate desirelevel (dl): closest

level that satisfies

invariants

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

Only the lower bound invariant is ever violated.

To achieve high parallelism, we need to move all vertices together for each desire-level

For vertices incident

to updated edges,

calculate desirelevel (dl): closest

level that satisfies

invariants

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

Only the lower bound invariant is ever violated.

To achieve high parallelism, we need to move all vertices together for each desire-level

For vertices incident

to updated edges,

calculate desirelevel (dl): closest

level that satisfies

invariants

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

For vertices incident

to updated edges,

calculate desirelevel (dl): closest

level that satisfies

invariants

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

9For vertices incident
to updated edges,
calculate desire-
level (dl): closest1111111111111111112

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

For vertices incident

to updated edges,

calculate desirelevel (dl): closest

level that satisfies

invariants

Deletions

Iterate from bottommost level to top level and move vertices to desire-level

Deletions

For vertices incident to updated edges, calculate *desirelevel (dl)*: closest level that satisfies invariants

Each vertex moves only once, unlike in sequential LDS

Coreness Estimate

- We set the coreness estimate of a vertex to be $(1 + \delta)^{\max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta} n \rceil) \rceil 1, 0)},$ where each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels
- Higher vertices have higher coreness estimates
- This gives a $(2 + \epsilon)$ -approximation
- Getting better than a 2-approximation is P-complete

Implementation Details

- Designed an optimized multicore implementation
- Used parallel primitives and data structures from the Graph Based Benchmark Suite [Dhulipala et al. '20]
- Maintain concurrent hash tables for each vertex v
 - One for storing neighbors on levels \geq level(v)
 - One for storing neighbors on every level i in [0, level(v)-1]
- Moving vertices around in the PLDS requires carefully updating these hash tables for work-efficiency

Complexity Analysis

- $O(\log^2 n)$ levels
 - O(log log n) span per level to calculate desire-levels using doubling search
 - $O(\log^* n)$ span with high probability for hash table operations
- Total span: $O(\log^2 n \log \log n)$ with high probability
- $O(B \log^2 n)$ amortized work is based on potential argument
 - Vertices and edges store potential based on their levels in PLDS, which is used to pay for the cost of moving vertices around

Experiments

Experimental Setup

- c2-standard-60 Google Cloud instances
 - 30 cores with two-way hyper-threading
 - 236 GB memory
- m1-megamem-96 Google Cloud instances
 - 48 cores with two-way hyperthreading
 - 1433.6 GB memory
- 3 different types of batches:
 - All batches of insertions
 - All batches of deletions
 - Mixed batches of both insertions and deletions

Runtimes/Accuracy vs. State-of-the-Art Algorithms

PLDS: our algorithm PLDSOpt: optimized PLDS Hua et al.: parallel, exact, dynamic algorithm Sun et al.: sequential, approx., dynamic algorithm

PLDSOpt: 19–544xces, 2.1M edgesPLDSOpt: 2.5–25xspeedup over Sun et al.4.8M vertices, 85speedup over Hua et al.

Runtime vs. Static Algorithms

- Parallel exact k-core decomposition [Dhulipala et al. '18]
- Parallel $(2 + \epsilon)$ -approximate *k*-core decomposition

- We achieve speedups for all but the smallest graphs
- Speedups of up to 122x for Twitter (1.2B edges) and Friendster (1.8B edges)

Conclusion

- Theoretically-efficient and practical batch-dynamic k-core decomposition algorithm
- Using our PLDS, we designed batch-dynamic algorithms for several other problems:
 - Low out-degree orientation
 - Maximal matching
 - Clique counting
 - Graph coloring
- Source code available at <u>https://github.com/qqliu/batch-dynamic-kcore-decomposition</u>

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, *"Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,"* SPAA 2022