
Parallel Batch-Dynamic k-Core
Decomposition

Julian Shun (MIT CSAIL)

Joint work with Quanquan Liu, Jessica Shi, Shangdi Yu,
and Laxman Dhulipala

1

Graphs are rapidly changing
(500M tweets/day,

547K new websites/day)

2

Graphs are becoming very large

3.5 billion vertices
128 billion edges

Size

Largest publicly
available graph

272 billion vertices
5.9 trillion edges Proprietary graph

Proprietary graph > 100 billion vertices
6 trillion edges

• Take advantage of
parallel machines

• Design dynamic
algorithms to avoid
unnecessary work on
updates

3

Parallelism and Dynamic Algorithms for
High Performance

Parallel Batch-Dynamic Algorithms

• Process updates in batches, and use parallelism
within each batch

4

A batch of edge
insertions/deletions

Current graph +
Current statistics

Updated graph +
Updated statistics

Insertion
Deletion

Our Parallel Batch-Dynamic Algorithms
5

k-core decomposition
Clique counting
Low out-degree orientation
Maximal matching
Graph coloring
Minimum spanning forest
Single-linkage clustering
Closest pair

Theory Practice

O(n log n)
O(n)

O(log n)

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, “Parallel Batch-
Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,” SPAA 2022

k-Core Decomposition

6

3-Core

2-Core

1-Core

k-Core Decomposition
k-core: maximal connected subgraph of G such that all
vertices have induced degree

Coreness(v): largest value of k such that v participates
in the k-core

Coreness(v) = 3

v

Goal: compute coreness for all vertices

Approximate k-Core Decomposition

Approx. coreness of every
vertex: 3

Approx.
coreness: 2

2-approx

c-Approx-Coreness(v): value within multiplicative c factor
of Coreness(v)

3/2-approx

k-core: maximal connected subgraph of G such that all
vertices have induced degree

Applications of k-core Decomposition

• Graph clustering
• Community detection
• Graph visualization
• Approximating network centrality

9

Our Results for k-core Decomposition
10

• Our algorithm dynamically maintains a 𝟐 + 𝝐 -
approximation for coreness of every vertex

• A batch of 𝐵 updates takes 𝑂 𝐵 log! 𝑛 amortized work
and polylogarithmic span (parallel time) with high
probability

• Our algorithm is work-efficient, matching the work of the
state-of-the-art sequential algorithm by Sun et al.

• Our algorithm is based a parallel level data structure

Sequential Level Data Structure (LDS)

𝑂(log! 𝑛)

Vertices partitioned
into levels

Cut-off: 1 + 𝜖 !

Cut-off: 1 + 𝜖 !"#

Cut-off: 1 + 𝜖 !"$

…

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

• Described by Bhattacharya et al. [STOC 2015] and
Henzinger et al. [2020]

• Maintain invariants per vertex, which give upper/lower
bounds on roughly its number of “up-neighbors”
(neighbors at around its level and above)

• We prove that levels translate to coreness estimates

𝑂(log! 𝑛)

Vertices partitioned
into levels

up-neighbors: > 2.1 1 + 𝜖 !

= edge insertion

Sequential Level Data Structure (LDS)

𝑂(log! 𝑛)

Vertices partitioned
into levels

up-neighbors: > 2.1 1 + 𝜖 !

Sequential Level Data Structure (LDS)

𝑂(log! 𝑛)

Vertices partitioned
into levels

up-neighbors: < 1 + 𝜖 !

= edge
deletion

Sequential Level Data Structure (LDS)

𝑂(log! 𝑛)

Vertices partitioned
into levels

up-neighbors: < 1 + 𝜖 !

Sequential Level Data Structure (LDS)

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Large sequential
dependencies

Low parallelism

Difficulties with Parallelization

Only processes
one update at a

time

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

1
2
3
4
5
6
7
8
9

10
11

Deletions

= edge
deletion

1
2
3
4
5
6
7
8
9

10
11

Deletions

Only the lower
bound invariant is

ever violated.

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

• Vertices only need to move down, and never up

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 5dl: 5

dl: 8

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 5dl: 5

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 5dl: 5

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

To achieve high parallelism, we need to move all vertices
together for each desire-level

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

To achieve high parallelism, we need to move all vertices
together for each desire-level

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 8

dl: 6

Iterate from
bottommost level to
top level and move

vertices to desire-level

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

dl: 6

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

1
2
3
4
5
6
7
8
9

10
11

Deletions

dl: 8 Iterate from
bottommost level to
top level and move

vertices to desire-level

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

1
2
3
4
5
6
7
8
9

10
11

Deletions

Iterate from
bottommost level to
top level and move

vertices to desire-level

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Only the lower
bound invariant is

ever violated.

For vertices incident
to updated edges,
calculate desire-
level (dl): closest

level that satisfies
invariants

• Each vertex moves only once, unlike in sequential LDS

Coreness Estimate

• We set the coreness estimate of a vertex to be
(1 + 𝛿)"#$(⌊('()('())+,)/ (. ⌈012!"# 3⌉)⌋6,,8),
where each group has 4 ⌈log,+9 𝑛⌉ levels

• Higher vertices have higher coreness estimates
• This gives a 2 + ϵ -approximation
• Getting better than a 2-approximation is P-complete

34

𝑂(log! 𝑛)

Vertices partitioned
into levels

Cut-off: 1 + 𝜖 !

Cut-off: 1 + 𝜖 !"#

Cut-off: 1 + 𝜖 !"$

…

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

Implementation Details

• Designed an optimized multicore implementation
• Used parallel primitives and data structures from the

Graph Based Benchmark Suite [Dhulipala et al. ‘20]
• Maintain concurrent hash tables for each vertex v
• One for storing neighbors on levels ≥ level(v)
• One for storing neighbors on every level i in [0, level(v)-1]

• Moving vertices around in the PLDS requires carefully
updating these hash tables for work-efficiency

35

Complexity Analysis
• 𝑂 log!𝑛 levels
• 𝑂 log log 𝑛 span per level to calculate desire-levels using doubling

search
• 𝑂 log∗𝑛 span with high probability for hash table operations

• Total span: 𝑂 log!𝑛 log log 𝑛 with high probability

• 𝑂 𝐵 log!𝑛 amortized work is based on potential argument
• Vertices and edges store potential based on their levels in PLDS,

which is used to pay for the cost of moving vertices around

36

Experiments

37

Experimental Setup
• c2-standard-60 Google Cloud instances
• 30 cores with two-way hyper-threading
• 236 GB memory

• m1-megamem-96 Google Cloud instances
• 48 cores with two-way hyperthreading
• 1433.6 GB memory

• 3 different types of batches:
• All batches of insertions
• All batches of deletions
• Mixed batches of both insertions and deletions

Runtimes/Accuracy vs. State-of-the-Art
Algorithms

DBLP: 425K vertices, 2.1M edges
LJ (LiveJournal): 4.8M vertices, 85.7M edges

PLDSOpt: 19–544x
speedup over Sun et al.

PLDSOpt: 2.5–25x
speedup over Hua et al.

Hua et al.: parallel, exact, dynamic algorithm
Sun et al.: sequential, approx., dynamic algorithm

PLDS: our algorithm
PLDSOpt: optimized PLDS

Runtime vs. Static Algorithms
• Parallel exact k-core decomposition [Dhulipala et al. ‘18]
• Parallel 2 + 𝜖 -approximate k-core decomposition

Batch size = 10! Graphs ordered by size (left to right)

• We achieve speedups for all but the smallest graphs
• Speedups of up to 122x for Twitter (1.2B edges) and

Friendster (1.8B edges)

Conclusion
• Theoretically-efficient and practical batch-dynamic k-core

decomposition algorithm

• Using our PLDS, we designed batch-dynamic algorithms
for several other problems:
• Low out-degree orientation
• Maximal matching
• Clique counting
• Graph coloring

• Source code available at
https://github.com/qqliu/batch-dynamic-kcore-
decomposition

41

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, “Parallel Batch-
Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,” SPAA 2022

https://github.com/qqliu/batch-dynamic-kcore-decomposition

