Parallel Batch-Dynamic k-Core
Decomposition

Julian Shun (MIT CSAIL)

Joint work with Quanquan Liu, Jessica Shi, Shangdi Yu,
and Laxman Dhulipala

. S
Graphs are becoming very large

Size
3.5 billion vertices Largest publicly
128 billion edges available graph

272 billion vertices

5.9 trillion edges Proprietary graph
> 100 billion vertices _
Google 6 trillion edges Proprietary graph

Graphs are rapidly changing

(500M tweets/day,
547K new websites/day)

3
Parallelism and Dynamic Algorithms for

High Performance

- Take advantage of
parallel machines

- Design dynamic
algorithms to avoid
unnecessary work on
updates

Parallel Batch-Dynamic Algorithms

- Process updates in batches, and use parallelism
within each batch

S, fv\--) &;

A batch of edge Current graph + Updated graph +
insertions/deletions Current statistics Updated statistics

- |nsertion
- = Deletion

Our Parallel Batch-Dynamic Algorithms

CKk-core decomposition

Cligue counting

Low out-degree orientation
Maximal matching

Graph coloring

Minimum spanning forest
Single-linkage clustering
Closest pair

a.length;c
b.push(alcl);

{_Unctlon]() :

#ser 10“,,)8 "

e O(n Iog n)

fE b om

place(/‘ .‘,’ e =27
)’ o %) r(a:k ‘

[sharedmemory |

=h

T heory Practice

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, “Parallel Batch-
Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,” SPAA 2022

k-Core Decomposition

L
k-Core Decomposition

k-core: maximal connected subgraph of G such that all
vertices have induced degree > k

Coreness(v): largest value of k such that v participates
in the k-core

1-Core
Coreness(v) = 3

\

3-Core

2-Core

Goal: compute coreness for all vertices

L
Approximate k-Core Decomposition

k-core: maximal connected subgraph of G such that all
vertices have induced degree > k

c-Approx-Coreness(v): value within multiplicative c factor
of Coreness(v)

3/2'apprOX Approx_
coreness: 2

2-approx

Approx. coreness of every
vertex: 3

-
Applications of k-core Decomposition

- Graph clustering

- Community detection

- Graph visualization

- Approximating network centrality

Our Results for k-core Decomposition

- Our algorithm dynamically maintains a (2 + €)-
approximation for coreness of every vertex

- A batch of B updates takes 0(B log? n) amortized work
and polylogarithmic span (parallel time) with high
probability

- Our algorithm is work-efficient, matching the work of the
state-of-the-art sequential algorithm by Sun et al.

- Qur algorithm is based a parallel level data structure

L
Sequential Level Data Structure (LDS)

- Described by Bhattacharya et al. [STOC 2015] and
Henzinger et al. [2020]

A
B Group of O(logn) levels
Cut-off: (1 + €)*
/
2 \;/ Group of O(logn) levels
O(log®n) / /} Cut-off: (1 + €)' 1
/)
/ / ,‘ Group of O(log n) levels
Vertices partitioned ‘ L Cut-off: (1 + €)'72
into levels
v

- Maintain invariants per vertex, which give upper/lower
bounds on roughly its number of “up-neighbors”
(neighbors at around its level and above)

- We prove that levels translate to coreness estimates

S
Sequential Level Data Structure (LDS)

A
\ /
0(log? n # up-neighbors: > 2.1(1 + €)*
(log”n) Vi
/[/)
[% o
Vertices partitioned /[= edge insertion
into levels V

S
Sequential Level Data Structure (LDS)

M
FF
0(log? n # up-neighbors: > 2.1(1 + €)*
(log”n) . 7
4
s
Vertices partitioned
into levels [Zd

S
Sequential Level Data Structure (LDS)

N
---------- = edge
0 (l 2) deletion
og°n X
g 7 4
/ S
/| 0 |
Vertices partitioned /[# up-neighbors: < (1 + €)"
into levels | 2

S
Sequential Level Data Structure (LDS)

A
O(log?n _
(log” n) / —
/[
A |
Vertices partitioned w v # up-neighbors: < (1 + €)!
into levels

Difficulties with Parallelization

Large sequential Low parallelism
dependencies | S

kﬁ
L,

Difficulties with Parallelization

Large sequential Low parallelism
dependencies | S

&

Difficulties with Parallelization

Large sequential Low parallelism
dependencies | o

4

[
L@

Difficulties with Parallelization

Large sequential Low parallelism
dependencies | o

/
[\

/
[=

Difficulties with Parallelization

Large sequential Low parallelism
dependencies | S
\ 9
va
7%

[=

Difficulties with Parallelization

Large sequential Low parallelism
dependencies

.

"

Difficulties with Parallelization

Large sequential Low parallelism
dependencies)
Q.
Only processes ,i/
one update at a /

time [Yl

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Deletions

—
—

RN
o

(o]

/ oo f = edge

deletion

AN WS OO N
N
| 3
”
“

Our Parallel Batch-Dynamic Level Data
Structure (PLDS)

Deletions

—
—

RN
o

(o]

Only the lower
bound invariant is
ever violated.

= N W s OO N O

- Vertices only need to move down, and never up

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

Deletions

—
—

RN
o

(o]

For vertices incident
to updated edges,

calculate desire-
level (dl): closest

’Q
“
*

level that satisfies

Only the lower

invariants

bound invariant is

ever violated.

= N W s OO N O

Our Parallel Batch-Dynamic Level Data

Structure (PLLC

For vertices incident
to updated edges,
calculate desire-
level (dl): closest
level that satisfies
invariants

—
—

-
© o

= N W s OO N O

Deletions
Q d:s
dl: 5 dl: 5
—a
/ /

Iterate from
bottommost level to
top level and move
vertices to desire-level

Only the lower
bound invariant is
ever violated.

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

For vertices incident
to updated edges,
calculate desire-
level (dl): closest
level that satisfies
invariants

—
—

-
© o

= N W s OO N O

Deletions
i I lterate from
bottommost level to
top level and move
di: 5 } d:5 vertices to desire-level
/
/ /

/ Only the lower
‘/(‘ bound invariant is

ever violated.

To achieve high parallelism, we need to move all vertices

together for each desire-level

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

For vertices incident
to updated edges,
calculate desire-
level (dl): closest
level that satisfies
invariants

—
—

-
© o

= N W s OO N O

Deletions

i I Iterate from
I bottommost level to
I top level and move
\ I vertices to desire-level
N\

Only the lower

bound invariant is

ever violated.

To achieve high parallelism, we need to move all vertices

together for each desire-level

Our Parallel Batch-Dynamic Level Data

Structure (PLLC

S)

Deletions

—
—

RN
o

(o]

For vertices incident
to updated edges,

d: 6

d: 8

I

4

—_—

Iterate from
bottommost level to
top level and move
vertices to desire-level

calculate desire-

4

level (dl): closest

level that satisfies

invariants

= N W s OO N O

Only the lower
bound invariant is
ever violated.

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

Deletions

—
—

RN
o

(o]

For vertices incident — dl: 6

to updated edges,

j/./QI
I
I

Iterate from
bottommost level to
top level and move
vertices to desire-level

calculate desire-

level (dl): closest

level that satisfies

invariants

=

= N W s OO N O

Only the lower
bound invariant is
ever violated.

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

Deletions
11
18 //CI> i I Iterate from
8 bottommost level to
For vertices incident / I top level and move
to updated edges, 7 I vertices to desire-level
calculate desire- 6
level (dl): closest 3
level that satisfies 4 / Only the lower
invariants 3 bound invariant is
2 ever violated.
1

Our Parallel Batch-Dynamic Level Data

Structure (PLDS)

Deletions
11
10 //CI> elES) lterate from
9 bottommost level to
For vertices incident 8 / I top level and move
to updated edges, 7 / I vertices to desire-level
calculate desire- 6 ‘\7
level (dl): closest 3
level that satisfies 4 / Only the lower
invariants 3 bound invariant is
2 ever violated.
1

Our Parallel Batch-Dynamic Level Data

Structure (PLLC

For vertices incident
to updated edges,
calculate desire-
level (dl): closest
level that satisfies
invariants

—
—

-
© o

= N W s OO N O

S)

Deletions
Iterate from
bottommost level to
top level and move
vertices to desire-level
/ Only the lower

bound invariant is

ever violated.

- Each vertex moves only once, unlike in sequential LDS

.
Coreness Estimate

A
) Group of O(log n) levels
Cut-off: (1 + €)*
/
2 \;/ Group of O(log n) levels
O(log®n) 7 % Cut-off: (1 + €)' 1
/ 7/
‘/é__/. Group of 0(log n) levels
Vertices partitioned Cut-off: (1 + €)'72
into levels
v

- We set the coreness estimate of a vertex to be
(1 1+ S)max(|(level(v)+1)/ (4 [log 45 n])J—l,O),

where each group has 4 [log,, s n] levels
- Higher vertices have higher coreness estimates
- This gives a (2 + €)-approximation
- Getting better than a 2-approximation is P-complete

. 3
Implementation Details

- Designed an optimized multicore implementation

- Used parallel primitives and data structures from the
Graph Based Benchmark Suite [Dhulipala et al. ‘20]

- Maintain concurrent hash tables for each vertex v
- One for storing neighbors on levels = level(v)
- One for storing neighbors on every level i in [0, level(v)-1]

- Moving vertices around in the PLDS requires carefully
updating these hash tables for work-efficiency

-
Complexity Analysis

- 0(log?n) levels

- O(log log n) span per level to calculate desire-levels using doubling
search

- 0(log*n) span with high probability for hash table operations
- Total span: 0(log?n log log n) with high probability

- 0(B log?n) amortized work is based on potential argument

- Vertices and edges store potential based on their levels in PLDS,
which is used to pay for the cost of moving vertices around

Experiments

S e
Experimental Setup

- c2-standard-60 Google Cloud instances

- 30 cores with two-way hyper-threading
- 236 GB memory

- m1-megamem-96 Google Cloud instances
- 48 cores with two-way hyperthreading
- 1433.6 GB memory

- 3 different types of batches:
- All batches of insertions
- All batches of deletions
- Mixed batches of both insertions and deletions

L
Runtimes/Accuracy vs. State-of-the-Art

Algorithms

PLDS: our algorithm
PLDSOpt: optimized PLDS

— HuaOPLDSOptIPLDSASun

Hua et al.: parallel, exact, dynamic algorithm
Sun et al.: sequential, approx., dynamic algorithm

|
10V

10&2

1004

PLDSOpt: 19-544x

10&6
DBLP Avg. Error (ratio)

ces, 2.1M edges

N \
A . 2 L A A -
g3 7 ", I" E g3 10 - A A
L A L - Aas | a
— 10} Ha .: A | 1 A
< - ‘A“AAII". E L 10 - A A
2 | __= s =
= 1071 u E = ol
50 - ‘ E 50 10 -
> 'e 12 * *
i | i ‘l
| ‘“’ * o] T "

10&5

LJ Avg. Error (ratio)

PLDSOpt: 2.5-25x
speedup over Sun et al. 4 8M vertices, 85 speedup over Hua et al.

Runtime vs. Static Algorithms

- Parallel exact k-core decomposition [Dhulipala et al. ‘18]
- Parallel (2 + €)-approximate k-core decomposition

_ |B8Speedup over Static Exact#8Speedup over Static Approx

Speedup over Static

R\ yo\).t\lbe Wik o o Sx,ac\gover&\%ﬁ,e'pnma\ OOt el et friendst®
Batch size = 10° Graphs ordered by size (left to right)

- We achieve speedups for all but the smallest graphs

- Speedups of up to 122x for Twitter (1.2B edges) and
Friendster (1.8B edges)

R . A
Conclusion

- Theoretically-efficient and practical batch-dynamic k-core
decomposition algorithm

- Using our PLDS, we designed batch-dynamic algorithms
for several other problems:
- Low out-degree orientation
- Maximal matching
- Clique counting
- Graph coloring

- Source code available at

https://github.com/qqliu/batch-dynamic-kcore-
decomposition

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, “Parallel Batch-
Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,” SPAA 2022

https://github.com/qqliu/batch-dynamic-kcore-decomposition

