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Graphs are rapidly changing
(500M tweets/day, 

547K new websites/day)
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Graphs are becoming very large

3.5 billion vertices
128 billion edges

Size

Largest publicly
available graph

272 billion vertices
5.9 trillion edges Proprietary graph 

Proprietary graph > 100 billion vertices
6 trillion edges



• Take advantage of 
parallel machines

• Design dynamic 
algorithms to avoid 
unnecessary work on 
updates
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Parallelism and Dynamic Algorithms for 
High Performance



Parallel Batch-Dynamic Algorithms

• Process updates in batches, and use parallelism 
within each batch
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A batch of edge
insertions/deletions

Current graph + 
Current statistics

Updated graph + 
Updated statistics

Insertion
Deletion



Our Parallel Batch-Dynamic Algorithms
5

k-core decomposition
Clique counting
Low out-degree orientation
Maximal matching
Graph coloring
Minimum spanning forest
Single-linkage clustering
Closest pair 

Theory Practice

O(n log n)
O(n)

O(log n)

Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun, “Parallel Batch-
Dynamic Algorithms for k-Core Decomposition and Related Graph Problems,” SPAA 2022



k-Core Decomposition
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3-Core

2-Core

1-Core

k-Core Decomposition
k-core: maximal connected subgraph of G such that all 
vertices have induced degree 

Coreness(v): largest value of k such that v participates 
in the k-core

Coreness(v) = 3

v

Goal: compute coreness for all vertices



Approximate k-Core Decomposition

Approx. coreness of every 
vertex: 3

Approx. 
coreness: 2

2-approx

c-Approx-Coreness(v): value within multiplicative c factor 
of Coreness(v)

3/2-approx

k-core: maximal connected subgraph of G such that all 
vertices have induced degree 



Applications of k-core Decomposition

• Graph clustering
• Community detection
• Graph visualization
• Approximating network centrality
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Our Results for k-core Decomposition
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• Our algorithm dynamically maintains a 𝟐 + 𝝐 -
approximation for coreness of every vertex

• A batch of 𝐵 updates takes 𝑂 𝐵 log! 𝑛 amortized work 
and polylogarithmic span (parallel time) with high 
probability

• Our algorithm is work-efficient, matching the work of the 
state-of-the-art sequential algorithm by Sun et al.

• Our algorithm is based a parallel level data structure



Sequential Level Data Structure (LDS)

𝑂(log! 𝑛)

Vertices partitioned 
into levels 

Cut-off: 1 + 𝜖 !

Cut-off: 1 + 𝜖 !"#

Cut-off: 1 + 𝜖 !"$

…

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

Group of 𝑂 log 𝑛 levels

• Described by Bhattacharya et al. [STOC 2015] and 
Henzinger et al. [2020]

• Maintain invariants per vertex, which give upper/lower 
bounds on roughly its number of “up-neighbors” 
(neighbors at around its level and above)

• We prove that levels translate to coreness estimates



𝑂(log! 𝑛)

Vertices partitioned 
into levels 

# up-neighbors: > 2.1 1 + 𝜖 !

= edge insertion

Sequential Level Data Structure (LDS)
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𝑂(log! 𝑛)

Vertices partitioned 
into levels 

# up-neighbors: < 1 + 𝜖 !

= edge 
deletion

Sequential Level Data Structure (LDS)



𝑂(log! 𝑛)

Vertices partitioned 
into levels 

# up-neighbors: < 1 + 𝜖 !

Sequential Level Data Structure (LDS)



Large sequential 
dependencies

Low parallelism

Difficulties with Parallelization
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Large sequential 
dependencies

Low parallelism

Difficulties with Parallelization

Only processes 
one update at a 

time



Our Parallel Batch-Dynamic Level Data 
Structure (PLDS)
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= edge 
deletion
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Only the lower 
bound invariant is 

ever violated.

Our Parallel Batch-Dynamic Level Data 
Structure (PLDS)

• Vertices only need to move down, and never up
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To achieve high parallelism, we need to move all vertices 
together for each desire-level
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Iterate from 
bottommost level to 
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Only the lower 
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For vertices incident 
to updated edges, 
calculate desire-
level (dl): closest 

level that satisfies 
invariants

• Each vertex moves only once, unlike in sequential LDS



Coreness Estimate

• We set the coreness estimate of a vertex to be 
(1 + 𝛿)"#$( ⌊('()('())+,)/ (. ⌈012!"# 3⌉)⌋6,,8),
where each group has 4 ⌈log,+9 𝑛⌉ levels

• Higher vertices have higher coreness estimates
• This gives a 2 + ϵ -approximation
• Getting better than a 2-approximation is P-complete

34

𝑂(log! 𝑛)

Vertices partitioned 
into levels 

Cut-off: 1 + 𝜖 !
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…
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Implementation Details

• Designed an optimized multicore implementation
• Used parallel primitives and data structures from the 

Graph Based Benchmark Suite [Dhulipala et al. ‘20]
• Maintain concurrent hash tables for each vertex v
• One for storing neighbors on levels ≥ level(v)
• One for storing neighbors on every level i in [0, level(v)-1]

• Moving vertices around in the PLDS requires carefully 
updating these hash tables for work-efficiency
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Complexity Analysis
• 𝑂 log!𝑛 levels
• 𝑂 log log 𝑛 span per level to calculate desire-levels using doubling 

search
• 𝑂 log∗𝑛 span with high probability for hash table operations

• Total span: 𝑂 log!𝑛 log log 𝑛 with high probability

• 𝑂 𝐵 log!𝑛 amortized work is based on potential argument
• Vertices and edges store potential based on their levels in PLDS, 

which is used to pay for the cost of moving vertices around
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Experiments
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Experimental Setup
• c2-standard-60 Google Cloud instances
• 30 cores with two-way hyper-threading
• 236 GB memory

• m1-megamem-96 Google Cloud instances
• 48 cores with two-way hyperthreading
• 1433.6 GB memory

• 3 different types of batches:
• All batches of insertions
• All batches of deletions
• Mixed batches of both insertions and deletions



Runtimes/Accuracy vs. State-of-the-Art 
Algorithms

DBLP: 425K vertices, 2.1M edges
LJ (LiveJournal): 4.8M vertices, 85.7M edges

PLDSOpt: 19–544x 
speedup over Sun et al.

PLDSOpt: 2.5–25x 
speedup over Hua et al.

Hua et al.: parallel, exact, dynamic algorithm
Sun et al.: sequential, approx., dynamic algorithm   

PLDS: our algorithm
PLDSOpt: optimized PLDS 



Runtime vs. Static Algorithms
• Parallel exact k-core decomposition [Dhulipala et al. ‘18]
• Parallel 2 + 𝜖 -approximate k-core decomposition

Batch size = 10! Graphs ordered by size (left to right)

• We achieve speedups for all but the smallest graphs
• Speedups of up to 122x for Twitter (1.2B edges) and 

Friendster (1.8B edges)



Conclusion
• Theoretically-efficient and practical batch-dynamic k-core 

decomposition algorithm

• Using our PLDS, we designed batch-dynamic algorithms 
for several other problems: 
• Low out-degree orientation
• Maximal matching 
• Clique counting
• Graph coloring

• Source code available at 
https://github.com/qqliu/batch-dynamic-kcore-
decomposition
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