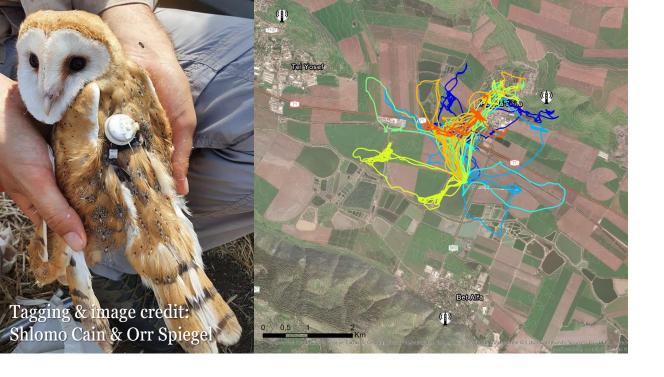
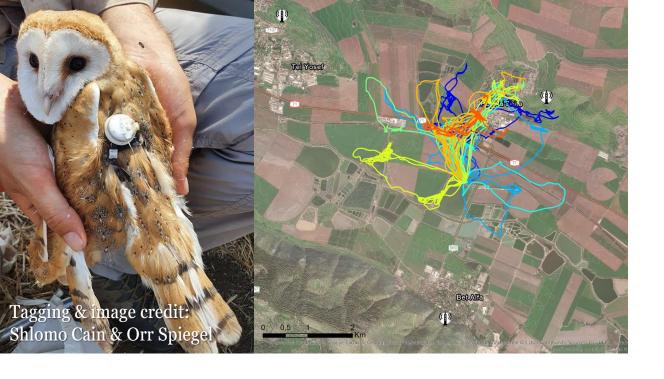
Combinatorial Problems and Algorithms in Robust Estimation

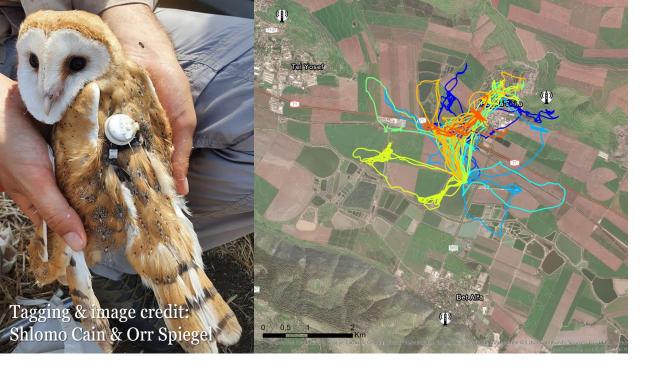
Sivan Toledo Blavatnik School of Computer Science Tel Aviv University

Eitam Arnon *Tel Aviv University*

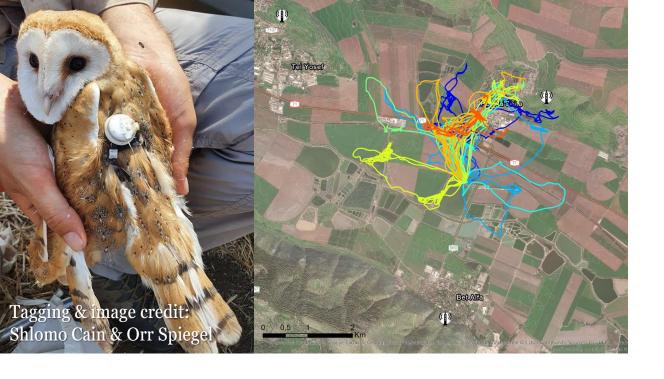




$$\hat{x} = \arg\min \|M(a, x) - b\|_2$$



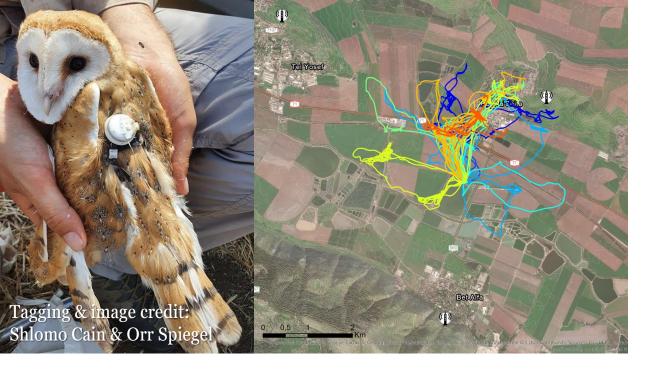
$$\hat{x} = \arg\min ||Ax - b||_2$$



$$\hat{x} = \arg\min \|M(a, x) - b\|_2$$

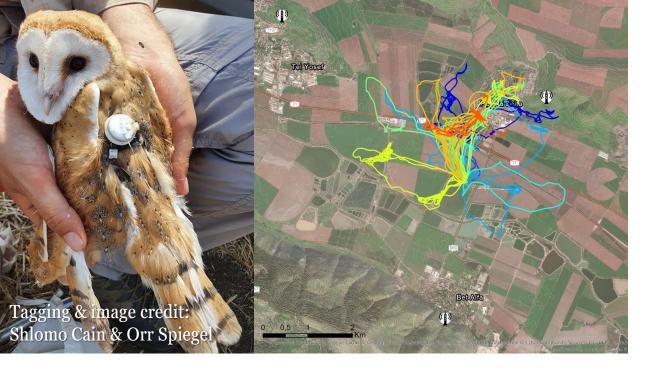
Tagging & image credit: Shlomo Cain & Orr Spiege

$\hat{x} = \arg\min ||M(a, x) - b||_2$



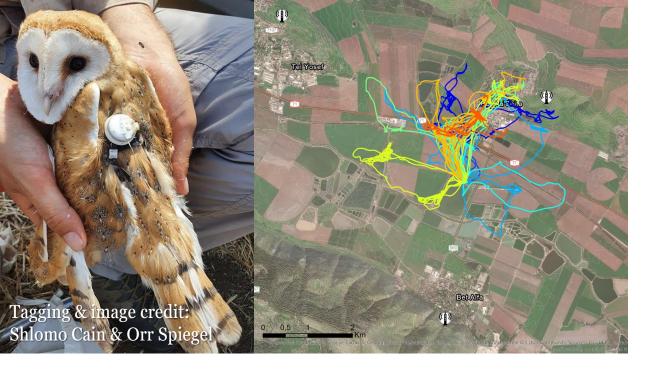
Why?

$\hat{x} = \arg\min ||M(a, x) - b||_2$



Why? Some observer vations (sensor data) b_i (or even some elements of a) are bad

$\hat{x} = \arg\min \|M(a, x) - b\|_2$



Why? Some observer vations (sensor data) b_i (or even some elements of a) are bad

(slightly) over determined, so hopefully can remove bad observations

$\hat{x} = \arg\min \|M(a, x) - b\|_2$

Estimation 101

- An observation vector b
- Generated by a parameterized system; some of the parameters, denoted x, are not known
- The system translates x to the observed quantities through a (possibly nonlinear) function M(a,x)=M(x), $M:\mathbb{R}^n\to\mathbb{R}^m$
- Inaccurate observation and/or imperfect model $\Rightarrow b = M(x) + \epsilon$ where ϵ is a noise vector; simplest possible form (additive)
- Our task is to estimate x from b

Estimation 102: Least Squares

- $\epsilon \sim N(0, I)$ implies $\hat{x} = \arg\min ||M(x) b||_2$ is optimal (max likelihood)
- $\epsilon \sim N(0, C)$ implies $\hat{x} = \arg\min \|W(M(x) b)\|_2$ where $W^TW = C^{-1}$
- (Basically same thing)
- Distributions with heavier tails lead to other norms, like $\|\cdot\|_1$
- Least squares minimization is very common in practice

Robust Estimation

• The assumption that we know the distribution of **all** the elements of ϵ is often **too simplistic**

- What to assume? Many possible answers
 - A mixture of two distributions (e.g., small & large Gaussian errors)
 - Most ϵ_i 's from a Gaussian distribution, the rest are worst case (statistically or computationally)
 - Many outliers or just a few
 - ...

Approaches to Robust Estimation

- 1. Identify outliers and remove them (a combinatorial problem)
- 2. Limit the influence (leverage) of outliers on the solution
- 3. Combinations

Norms and Other Penalties

• Given a hypothesis x, form the residual r = M(x) - b

- $\|\cdot\|_2^2 = \sum_i r_i^2$ all *i*, breakdown of 0 (1 bad outlier is ruinous)
- $||\cdot||_1 = \sum_i |r_i|$ all i, breakdown of 0

Norms and Other Penalties

• Given a hypothesis x, form the residual r = M(x) - b

•
$$\|\cdot\|_2^2 = \sum_i r_i^2$$
 all *i*, breakdown of 0 (1 bad outlier is ruinous)

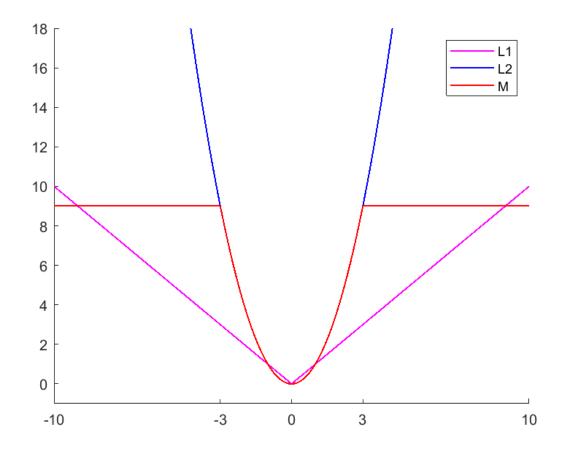
•
$$\|\cdot\|_1 = \sum_i |r_i|$$
 all i , breakdown of 0

•
$$\sum_{i} \xi(r_i)$$
 ξ bounded, zero at zero (bounded influence)

- $\sum_{i \in S} r_i^2$ S may depend on r, e.g., smallest $|r_i|'$ s; LTS
- median($|r_i|$) LMS; similar, but less efficient (statistically)

M-Measures and M-Estimators

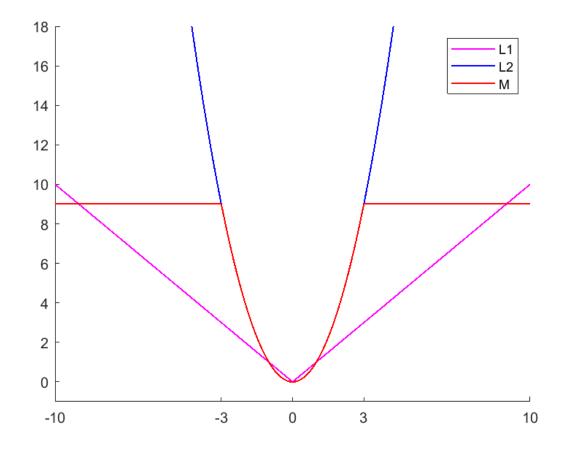
- Assume that for inliers $\epsilon \sim N(0, I)$
- \rightarrow if x is exact, then , $\Pr(|r_i| > 3) \approx 0.01$
- So the meaning of $|r_i| = 20$ or $|r_i| = 30$ is the same: an outlier
- $\sum_{i} \xi(r_i)$, ξ bounded, zero at zero



M-Measures and M-Estimators

- Assume that for inliers $\epsilon \sim N(0, I)$
- \rightarrow if x is exact, then , $\Pr(|r_i| > 3) \approx 0.01$
- So the meaning of $|r_i| = 20$ or $|r_i| = 30$ is the same: an outlier
- $\sum_{i} \xi(r_i)$, ξ bounded, zero at zero

- A miminization problem, but clearly nonconvex
- And (for this ξ) no incentive to reduce number of outliers



Now You Known What Robust Estimation Is

Beware of Nonexperts

- Like me; I am not a statistician
- But experts also sometimes have weird views, as when they promote LTS disregarding computational efficiency

Are These Problems Hard? Focusing for now on Linear Problems

- $\bullet M(x) = Ax$
- $A \in \mathbb{R}^{m \times n}$

Can We Find the Outliers?

Can We Find the Outliers? Probably Not

That is, not if they are hiding

Can We Find the Outliers? Probably Not

- That is, not if they are hiding
- Hardness of Solving Sparse Overdetermined Linear Systems: A 3-Query PCP over Integers, Guruswami & Raghavendra, ACM Trans. on Computation Theory, 2009
- S(Ax = b), S only selects rows; 3 nonzeros per row; real or integer
- Is there an x that satisfies a $1-\delta$ fraction of the equations?
- Does every x, possibly real, violate at least 1ϵ of the equations?
- NP hard to distinguish for any $\delta, \epsilon > 0$

Approximate Solutions Easier? Probably Not

NP-Hardness of Approximately Solving Linear Equations over the Reals,
 Khot and Moskovich, SIAM J. on Computing 2013

- $S(Ax \approx 0)$, S only selects rows; only 3 bounded nonzeros per row
- Is there a nontrivial x that satisfies a 1δ fraction of the equations?
- Does every nontrivial x lead to residuals larger than $\sqrt{\delta}$ in a constant fraction of the equation?
- NP-hard to classify

Open Problems for Theoreticians

- $S(Ax \approx b)$
- Find outliers when A is a Laplacian
- Even the case of a bipartite (weighted) Laplacian is interesting

 Probably also hard, but the structure probably precludes many useful reductions

Are These Problems Hard in Practice?

- Not necessarily
- **Ra**ndom **sa**mple **c**onsensus: a paradigm for model fitting with applications to image analysis and automated cartography, Fischler & Bolles, CACM 1981 (~29K citations)
- $S_j(Ax_j = b)$ select many random samples S_j of size n (exactly determined)
- (also works in the nonlinear case)
- Consensus set of x_j is rows for which $|Ax_j b|$ is small
- Largest consensus set -> inliers, solve using inliers using least squares

RANSAC Details

- Admission threshold (x_i are very approximate)
- How many subsets to test
- Obviously, lots of variants

• Original motivation came from highly overdetermined problems in low dimensions (e.g., 6); can afford to throw away lots of suspects

Why Does it Work: Theory and Practice

- Suppose that an adversary gets to choose the indexes of the outliers
- But not their value; they will come from some oblivious process

• Given a reasonably accurate **hypothesis** x_j , an outlier b_i will be far from $(Ax_j)_i$ and hence easy to detect

Adaptations to Location Estimation

ToA equation with an imperfect clock

$$t_{ir} = \tau_i + \frac{1}{c} \|\rho_r - \ell_i\|_2 + o_r + \epsilon_{ir}$$

ToA for a beacon at a known location

$$t_{br} = \tau_b + \frac{1}{c} \|\rho_r - \ell_b\|_2 + o_r + \epsilon_{br}$$

• We use difference equations for outlier classification

$$(t_{ir} - t_{br}) = (\tau_i - \tau_b) + \frac{1}{c} \|\rho_r - \ell_i\|_2 - \frac{1}{c} \|\rho_r - \ell_b\|_2 + (\epsilon_{ir} - \epsilon_{br})$$

• Three (nonlinear) equations in 3 unknowns → 0, 1, 2 analytical solutions

Overall Setup

- For every tag transmission, we have many admissible beacon tx's
- Each beacon tx generates a set of difference equations
- Each triplet generates 0, 1, or 2 hypotheses
- The aim is to first find a good hypothesis

• We can generate random triplets, but in practice we rank them by SNR (related to standard deviation of ϵ_{ir})

Approach 1: a la RANSAC

 For each triplet, classify difference equations from the same beacon tx as inliers or outliers by substituting a hypothesis

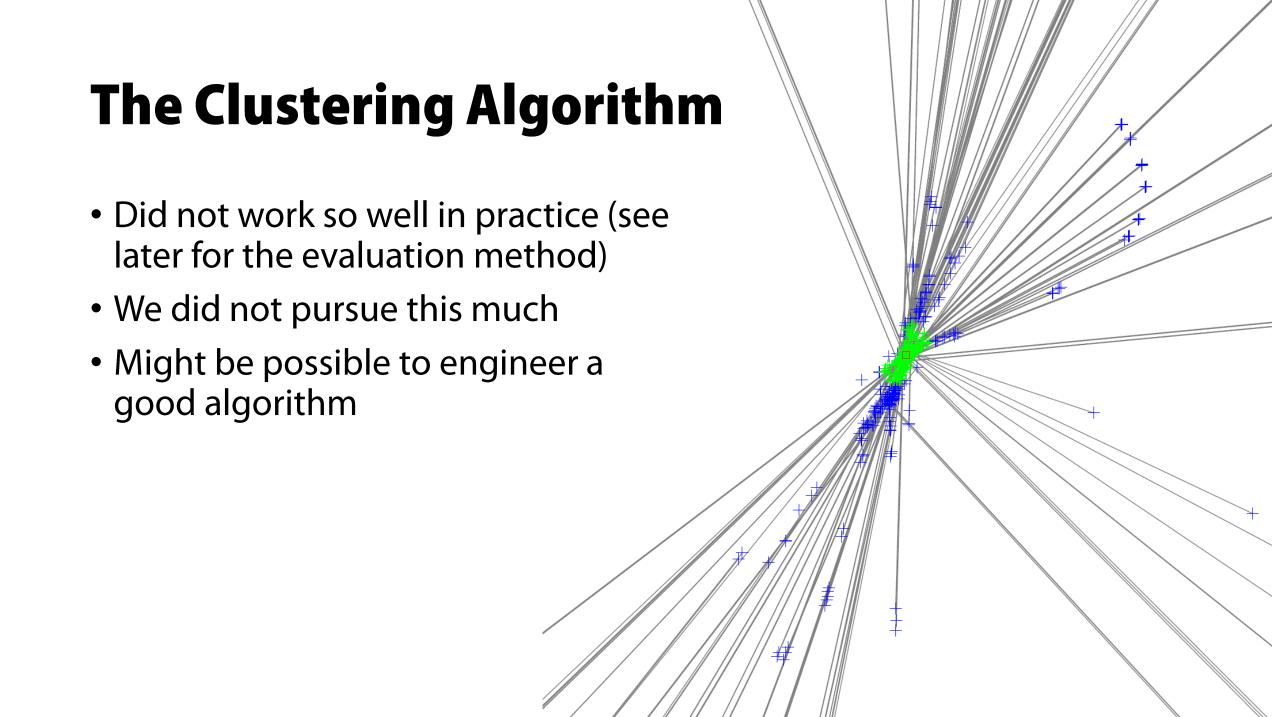
$$(\epsilon_{ir} - \epsilon_{br}) = (t_{ir} - t_{br}) - (\tau_i - \tau_b) + \frac{1}{c} \|\rho_r - \ell_i\|_2$$

$$- \frac{1}{c} \|\rho_r - \ell_b\|_2$$

- Rank hypotheses by *consensus set,* then max residual & distance from a previous location
- Pick the best hypothesis, filter inliers for the same beacon tx, solve
- Optional: classify and add inliers from other beacon tx's, solve again

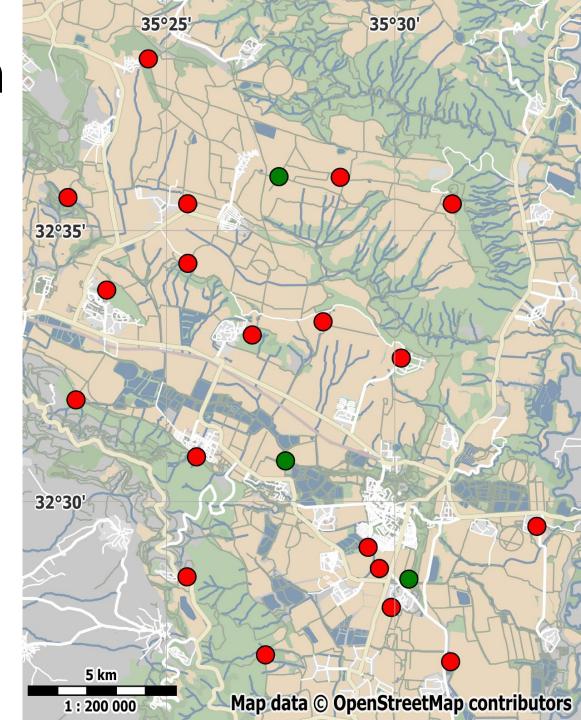
Approach 2: Hypotheses Clustering

- Collect a large set of hypothetical geometric solutions (from many beacon tx's, many triplets)
- For inliers, at least one of up to 2 is near ℓ_i , so run a clustering algorithm (we use HDBSCAN) to find the largest cluster, take its medians as a hypothesis
- Use that location to filter and solve inlier ToA constraints



Real-World Results from an ATLAS System

 Joint work with Eitam Arnon, Shlomo Cain, Assaf Uzan, Ran Nathan, and Orr Spiegel

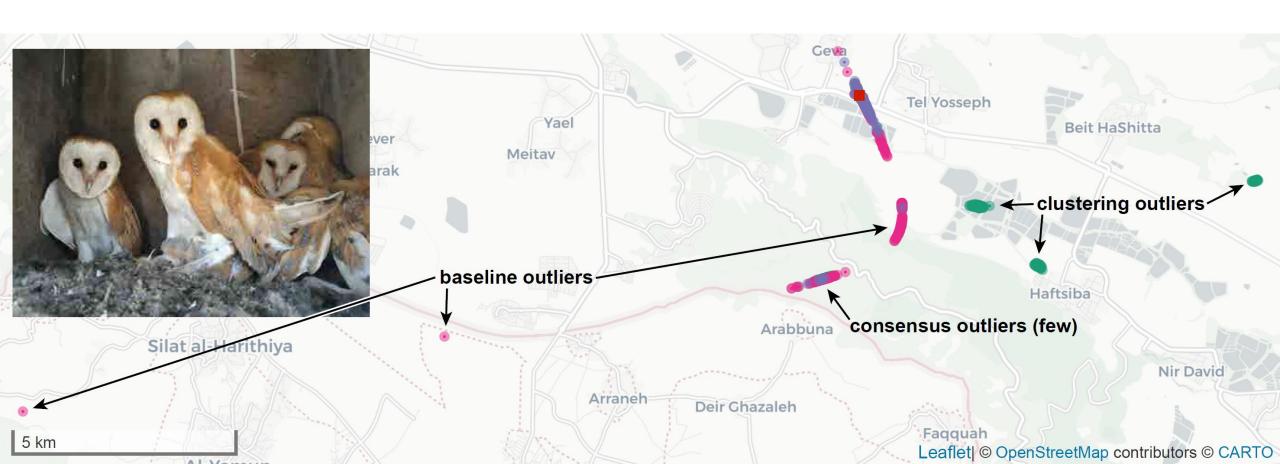


An Easy Case

 Tracks with few outliers (a flying owl) are almost the same with or without outlier detection and rejection (orange and green, respectively)

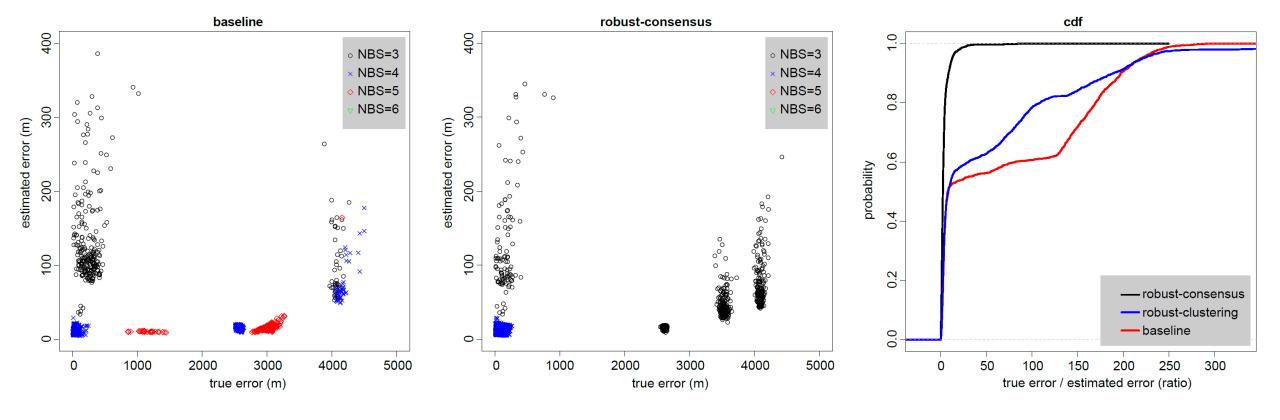
A Harder Case

 An owl in a next box generates a lots of outliers; many fewer with the robust algorithm than without outlier detection and rejection



Statistics

 The robust algorithm produces outliers almost exclusively with exactlydetermined problems; the old algorithm also with overdetermined



Summary

- Robust estimation is a combinatorial problem in statistics
- Combinatorial solutions proposed by statisticians appear to be computationally inefficient
- Minimization solutions by statisticians are nonconvex and probably also hard
- Natural simplifications are hard even to approximate
- In practice the problem is usually easy in low dimensions
- An example from location estimation; two kinds of heuristics
- And the next steps are...

Next Challenges

• (Complexity of robust overdetermined Laplacians)

- Practical robust estimation in high dimensions
 - Identify inliers in small seperable sub-problems, stitch together
 - Might allow a RANSAC-like strategy to work in high dimensions
- Why solve a large unified problem if we can split it?
 - Better statistical performance; but only if we removed the outliers!
- Examples of such problems:
 - Overdetermined Laplacians (clock synchronization problems; bipartite)
 - Kalman smoothing

That's It