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Estimation 101

 An observation vector b

* Generated by a parameterized system; some of the parameters,
denoted x, are not known

* The system translates x to the observed quantities through a
(possibly nonlinear) function M(a,x) = M(x), M: R"* - R™

* Inaccurate observation and/or imperfect model > b = M(x) + €
where € is a noise vector; simplest possible form (additive)

 Qur task is to estimate x from b



Estimation 102: Least Squares

€ ~N(0,I)impliesx = argmin||M(x) — b||, is optimal (max likelihood)
e € ~ N(0,C) implies £ = argmin||W (M (x) — b)||, where WIW = C~1
* (Basically same thing)

* Distributions with heavier tails lead to other norms, like ||-||;

* Least squares minimization is very common in practice



Robust Estimation

* The assumption that we know the distribution of all the elements of
e is often too simplistic

* What to assume? Many possible answers
* A mixture of two distributions (e.g., small & large Gaussian errors)

* Most €;'s from a Gaussian distribution, the rest are worst case (statistically or
computationally)

* Many outliers or just a few



Approaches to Robust Estimation

1. ldentify outliers and remove them (a combinatorial problem)
2. Limit the influence (leverage) of outliers on the solution
3. Combinations



Norms and Other Penalties

* Given a hypothesis x, form the residual r = M(x) — b
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Norms and Other Penalties

* Given a hypothesis x, form the residual r = M(x) — b
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all i, breakdown of 0 (1 bad outlier is ruinous)
all i, breakdown of 0

¢ bounded, zero at zero (bounded influence)

S may depend on r, e.g., smallest |r;|’s; LTS
LMS; similar, but less efficient (statistically)



* Assume that for inlierse ~ N(0,I)

M-Measures and M-Estimators

« 2 if x is exact, then, Pr(|r;| > 3) = 0.01

* So the meaning of |r;| = 20
or |[r;| = 30 is the same: an outlier

« .. &(1y), € bounded, zero at zero
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* Assume that for inlierse ~ N(0,I)

M-Measures and M-Estimators

« 2 if x is exact, then, Pr(|r;| > 3) = 0.01

* So the meaning of |r;| = 20
or |[r;| = 30 is the same: an outlier

« .. &(1y), € bounded, zero at zero

* A miminization problem, but
clearly nonconvex

* And (for this &) no incentive to
reduce number of outliers
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Now You Known What Robust Estimation s



Beware of Nonexperts

e Like me; | am not a statistician

* But experts also sometimes have weird views, as when they
promote LTS disregarding computational efficiency



Are These Problems Hard?
Focusing for now on Linear Problems

* M(x) = Ax
¢ A € RMXN



Can We Find the Outliers?



Can We Find the Outliers? Probably Not

* That is, not if they are hiding



Can We Find the Outliers? Probably Not

* That is, not if they are hiding

* Hardness of Solving Sparse Overdetermined Linear Systems: A 3-Query
PCP over Integers, Guruswami & Raghavendra, ACM Trans. on
Computation Theory, 2009

* S(Ax = b), S only selects rows; 3 nonzeros per row; real or integer
* |s there an x that satisfiesa 1 — § fraction of the equations?
* Does every x, possibly real, violate at least 1 — € of the equations?

* NP hard to distinguish forany §,e > 0



Approximate Solutions Easier? Probably Not

* NP-Hardness of Approximately Solving Linear Equations over the Reals,
Khot and Moskovich, SIAM J. on Computing 2013

* S(Ax = 0), S only selects rows; only 3 bounded nonzeros per row
* |s there a nontrivial x that satisfiesa 1 — ¢ fraction of the equations?

» Does every nontrivial x lead to residuals larger than v/§ in a constant
fraction of the equation?

* NP-hard to classify



Open Problems for Theoreticians

* S(Ax = b)
 Find outliers when A is a Laplacian
* Even the case of a bipartite (weighted) Laplacian is interesting

* Probably also hard, but the structure probably precludes many
useful reductions



Are These Problems Hard in Practice?

* Not necessarily

* Random sample consensus: a paradigm for model fitting with applications to
image analysis and automated cartography, Fischler & Bolles, CACM 1981
(~29K citations)

* S (ij = b) select many random samples S; of size n (exactly determined)
* (also works in the nonlinear case)

» Consensus set of x; is rows for which [Ax; — b is small

* Largest consensus set = inliers, solve using inliers using least squares



RANSAC Details

* Admission threshold (x; are very approximate)
* How many subsets to test
* Obviously, lots of variants

* Original motivation came from highly overdetermined problems in low
dimensions (e.g., 6); can afford to throw away lots of suspects



Why Does it Work: Theory and Practice

* Suppose that an adversary gets to choose the indexes of the outliers
 But not their value; they will come from some oblivious process

* Given a reasonably accurate hypothesis x;, an outlier b; will be far from
(ij)i and hence easy to detect



Adaptations to Location Estimation

* ToA equation with an imperfect clock
tr =1+ cllor — il + 0 + €
* ToA for a beacon at a known location
tpr = Tp + 1/C o, — gb”Z T 0y + €py
* We use difference equations for outlier classification
(tir o tbr) — (Ti o Tb) + 1/C ”pr o fi”z R 1/C ”pr R €b||2
+ (Eir o Ebr)
* Three (nonlinear) equations in 3 unknowns = 0, 1, 2 analytical solutions



Overall Setup

* For every tag transmission, we have many admissible beacon tx’s
e Each beacon tx generates a set of difference equations

 Each triplet generates O, 1, or 2 hypotheses

* The aim is to first find a good hypothesis

* We can generate random triplets, but in practice we rank them by
SNR (related to standard deviation of €;,.)



Approach 1: ala RANSAC

* For each triplet, classify difference equations from the same beacon
tx as inliers or outliers by substituting a hypothesis

(eir — €py) = (tiy — tpr) — (1 — 1) + ey = 25l
— 1/C “pr — fb”Z

* Rank hypotheses by consensus set, then max residual & distance
from a previous location

* Pick the best hypothesis, filter inliers for the same beacon tx, solve

* Optional: classify and add inliers from other beacon tx’s, solve again
_|_



Approach 2: Hypotheses Clustering

* Collect a large set of hypothetical geometric solutions (from many
beacon tx’s, many triplets)

* Forinliers, at least one of up to 2 is near #;, so run a clustering
algorithm (we use HDBSCAN) to find the largest cluster, take its
medians as a hypothesis

* Use that location to filter and solve inlier ToOA constraints



The Clustering Algorithm

 Did not work so well in practice (see
later for the evaluation method)

* We did not pursue this much

* Might be possible to engineer a
good algorithm
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An Easy Case

* Tracks with few outliers (a flying owl)
are almost the same with or without
outlier detection and rejection
(orange and green, respectively)
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A Harder Case

* An owl in a next box generates a lots of outliers; many fewer with the
robust algorithm than without outlier detection and rejection
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estimated error (m)

Statistics

* The robust algorithm produces outliers almost exclusively with exactly-
determined problems; the old algorithm also with overdetermined
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Summary

* Robust estimation is a combinatorial problem in statistics

* Combinatorial solutions proposed by statisticians appear to be
computationally inefficient

* Minimization solutions by statisticians are nonconvex and probably
also hard

* Natural simplifications are hard even to approximate

* In practice the problem is usually easy in low dimensions

* An example from location estimation; two kinds of heuristics
* And the next steps are...



Next Challenges

* (Complexity of robust overdetermined Laplacians)

* Practical robust estimation in high dimensions
* |dentify inliers in small seperable sub-problems, stitch together
* Might allow a RANSAC-like strategy to work in high dimensions

* Why solve a large unified problem if we can split it?
* Better statistical performance; but only if we removed the outliers!

* Examples of such problems:
* Overdetermined Laplacians (clock synchronization problems; bipartite)
* Kalman smoothing



That's It





