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Finding a minimum vertex cover (Min-VC) is one of the
most well-studied NP-hard problems.

Khot & Regev,Jour. Comp.and Sys. Sci. 2008

Simple linear-time 2-approximation
algorithms for Min-VC have existed
since the 1970s and 1980s.

For every fixed € > 0, it is UGC-hard to
obtain a 2-g approximation. (KR '08)

This talk will cover a simple new 2-

approximation algorithm for
minimum vertex cover.
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Simple, linear-time Min-V( algorithms have been known
for decades. So what is new, and what’s this talk about?

1. New and unifying connections
« Equivalence with an existing greedy independent set algorithm
* New connections to correlation clustering algorithms

* This has implications for a parallel MIS algorithm that simultaneously
solves multiple problems

2. Simple and fast algorithms for problems that can be reduced to Min-VC

3. Open questions
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A standard 2-approximation is to include all nodes from
a maximal matching

M

Theorem.
For every maximal matching,
the endpoints are 2-approx for Min-VC.
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This can be implemented by iterating through edges

O(E) runtime

for each (u,v) € E

if (u,wv) is not covered

/
_
g

C /\

This has also been generalized to node-weighted Min-VC. (B-Y, E 85)

C <+ CUA{u,v}

end
end

Bar-Yehuda & Even, Ann.Dis.Math 1985 Nate Veldt



Pitt’s algorithm is a randomized 2-approximation

J

N
¥

/

O(E) runtime

for each (u,v) € E

end

if (u,v) is not covered

choose u© or v at random

end

This has also been generalized to node-weighted Min-VC

Leonard Pitt, Yale University, 1985
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The new" algorithm generates a random node permutation
and greedily grows a maximal independent set

O(E) runtime (unweighted case)
C generate random permutation o

§ miioy G
visit node o(7) 109 weight
I ? add to I if possible
/ else add to C
r— -8 end

Can be easily generalized to weighted Min-V(!
The runtime becomes O( V log V + E)
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The unweighted version has been used for decades as a
Greedy Maximal Independent Set algorithm

C A sample of references on GreedyMIS
Coppersmith, Raghavan & Tompa, FOCS 1987

’ Gamarnik & Goldberg, Prob. & Computing 2010
Blelloch, Fineman & Shun, SPAA 2012

J J Bennet & Bohman, RSA 2016
/ Fischer & Noever, TALG 2019, SODA 2018
7 8 J. Shi, Wang, Shang, (survey) 2018

These focus on MIS, no mention of Min-VC

Theorem (Veldt, 2022). GreedyMIS is a randomized 2-approximation algorithm for

Min-VC (and can be generalized to node-weighted graphs).
https.//arxiv.org/abs/2209.04673 Nate Veldt 11



https://arxiv.org/abs/2209.04673

A corollary regarding Parallel GreedyMIS

A simple parallel version of GreedyMIS selects
multiple IS nodes in each round.

o

Returns same output as the sequential version!

’ WHP, it terminates in O(log n) rounds (FN 18).
/ 9 Corollary. Parallel GreedyMIS returns:

A maximal independent set
2-approximate vertex cover
3-approximation for correlation clustering
3-approximation for STC+

(related to Lutz’s talk)

\

Fischer & Noever, SODA 2018 Nate Veldt 12



Proof sketch

We need to “pay” for nodes added to C.

_—
AN

Say u is added to C.

/

It must have had a neighbor v that was
added to I.

/ \ / Charge edge (u,v) for adding u to C.

=
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Proof sketch Puv

Step 1: algorithm’s expected cost is:

= probability (u,v) is charged I

E|cost] = Z Puw

Dual LP (fractional matching)

s.t. Yu e V: Z uzeEyuz_

max Y
(u,v)EE
<1

Y ZOfor (u,v) € E.

Step 2: Prove (implicitly) that

_ 1
Yuv = 3Puv

!

Puwv

Min-VC > OPT Dual LP > Z o=

t

LP duality

(u,v)eEE

Nate Veldt

E|cost]

2

is feasible for dual.
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Pr!\n-‘-' . he pr?:\):ﬂaﬂoﬂ Puv = probability (u,v) is charged I

E|cost] = Z Puw

max E Yuw
uv EE

yuv ZOfor (u v) € E.

Step 2: Prove (implicitly) that

_ 1
Yuv = 3Puv

!

Puwv

Min-VC > OPT Dual LP > Z o=

t

LP duality

(u,v)eEE
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Colored Hypergraph Clustering can be reduced to Min-V(
in an approximation preserving way o unsatisfied edges:

Node colors don't
' match edge color
g %

Edge-Colored Hypergraph Clustering. Given an edge-colored hypergraph,
color nodes in a way that leaves the fewest number of edges unsatisfied.

Equivalently: delete (or cover) min # number of edges to destroy pairs of edges
that overlap and are a different color.

Amburg, Veldt, & Benson, WWW 2020, Veldt 2022 Nate Veldt 16



Colored Hypergraph Clustering can be reduced to Min-V(
in an approximation preserving way

Naive 2-approximation. Explicitly form G and run an existing 2-approximation
algorithm that iterates through all edges in G.

Runtime. O(Z d% + |E)%), |E| = # hyperedges

veV Nate Veldt
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We can implicitly implement GreedyMIS in linear-time!

When we visit an edge e, we just check We never actually form this
each node in e, which takes O(|e|) time graph or consider all its edges.

Applying this procedure to H takes O (Z e|> time.
eckE
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The proof is inspired by a 3-approximation algorithm
for correlation clustering called Pvot S

Correlation clustering (also called cluster edwusfefing
—
G O O L

Goal: add/delete a minimum # of edges to change into disjoint clique graph

Pivot algorithm: cluster
random pivot nodes with ./O

their unclustered neighbors

Nate Veldt
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Pivot is (basically) equivalent to GreedyMIS!

The random pivot nodes are a

/K greedy maximal independent set.

\ }\ This has been observed in previous
— work on parallel MIS algorithms.
\ Fischer & Noever, TALG 2019
However, this is not the inspiration
\ for the new Min-VC algorithm!
That is related to a more subtle
relationship.

Nate Veldt
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Pivot can be implicitly viewed as a 5-approximation for
a 3-uniform hypergraph Vertex Cover algorithm

Correlation clustering in G... ...can be lower-bounded by a Min-VC
problem in a 3-uniform hypergraph H

Adding/deleting an edge in G... ....means covering a node in H

Nate Veldt
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Open questions

Can we further simplify/unify existing parallel algorithms for finding maximal
independent sets, approximating Min-VC, and approximating correlation clustering?

Can this maximal independent set approach for Min-VC be extended to hypergraph
vertex cover?

Can we exploit this relationship between Min-VC and correlation clustering to
develop new combinatorial and parallel algorithms for weighted correlation
clustering?

Growing a Random Maximal Independent Set Produces a 2-approximate Vertex Cover
Nate Veldt,

Thanks!
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