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Real-World Graphs Are Sparse

Social networks Computational biology Road networks
…and others!

Sparse graphs, which have many fewer edges than the total possible 
number of edges, underlie most real-world applications.
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Sparsity disrupts locality due to the presence of many zeroes in the data.



Real-World Graphs Are Also Dynamic
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Furthermore, many real-world sparse graphs are dynamic: they change 
over time.

Updates

Systems for processing dynamic graphs support updates (e.g. edge 
insertions and deletions) and queries (algorithms run on the graph).


Dynamic graphs disrupt locality because of the inherent tradeoff between 
colocating and updating data (e.g., in CSR).



Multicore Optimization Enables 

Fast Graph Queries and Updates

Despite these challenges to locality, high-performance dynamic-graph-
processing systems such as Aspen [DhulipalaShBl19] have taken huge steps 
towards efficient queries and updates.


On 48 cores, Aspen runs the following queries on Twitter (2.4B edges):
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Breadth-first search Betweenness centralityPageRank
0.32s 24.03s 4.72s

Times are human-measurable even with parallelism, 
demonstrating the importance of efficient processing



Query Speed in Dynamic Graph Systems
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Both systems support

parallelization.


Both systems run the 

same algorithms 

by implementing

the Ligra [ShunBl13] 
abstraction.


Surprisingly, in some cases, 
Terrace achieves speedup 
on queries over Ligra 
[ShunBl13], a static graph 
system.

Breadth-first Search PageRank Betweenness 
Centrality

Connected 
Components

Terrace [PandeyWhXuBu21], a dynamic graph processing system, optimizes further 
with a “locality-first design” that takes advantage of graph structure.

Normalized Speedup 
of Terrace Over Aspen  
[DhulipalaShBl19]

[PandeyWhXuBu21] Pandey, Wheatman, Xu, Buluç. “Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs.” SIGMOD ’21.



Updatability of Dynamic Graph Systems

Terrace

Aspen

[DhulipalaShBl19]

6

Insertion Throughput 
(in millions of edges 
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]


and added in batches

using the provided API.


Terrace achieves up to 

48M inserts per second

and up to 9M deletes per

second. Future work

includes optimizing

batch deletions.

Terrace achieves the best of both worlds in query and update performance 
by taking advantage of locality.



Dynamic Graph Processing and 

the Locality-First Strategy
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Understand locality 
in dynamic graph 

processing

Problem: Dynamic 

graph processing

Exploit locality via data 
structure design for 

graphs

Add parallelism into data 
structures

$$



Understanding Locality in Graph Queries
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 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
   v = Q.dequeue()
   for all edges (v, w) in G.neighbors(v):
     if w not explored:
       label w as explored

Scan

Systems for processing dynamic graphs must support fast graph queries.


Vertex scans, or the processing of a vertex’s incident edges, are a crucial 
step in graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E: 
   intersect neighbors of u and v:
     if u and v share a neighbor w:

Scan

Triangle counting
Each neighbor list is scanned at 
most once (no temporal locality), 
so optimize for spatial locality



Most Graph Systems Separate Neighbor Lists 

for Parallelization
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Existing dynamic graph systems optimize for parallelism first with separate 
per-vertex data structures e.g. trees [DhulipalaBlSh19], adjacency lists 
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts spatial locality.

Simplified parallelization 
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges



Dynamic Graph Processing and 

the Locality-First Strategy
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Understand locality 
in dynamic graph 

processing

Problem: Dynamic 

graph processing

Exploit locality via data 
structure design for 

graphs

Add parallelism into data 
structures

$$



Enhancing Spatial Locality by 

Colocating Neighbor Lists
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Cache misses between 
vertices while reading all edges 

in any order (e.g. PageRank)

Idea: Colocate neighbor lists in the same data structure, which avoids cache 
misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]: 
colocating data with 

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21. 

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

x



Dynamic Graphs Are Often Skewed
Real-world dynamic graphs, e.g. social network graphs, often follow a skewed 
(e.g. power-law) distribution with a few high-degree vertices and many low-
degree vertices [BarabasiAl99].

Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter 64.56 99.51

Number of Twitter followers

Frequency

These graphs exhibit 
high degree variance: 

for example, the 
maximum degree in 
the Twitter graph is 

about 3 million 
[BeamerAsPa15]
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Next step: refine the solution with a hierarchical design that takes 
advantage of skewness while maintaining locality as much as possible.
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Problem: High-degree 
vertices slow down updates 
for all vertices in the shared 

data structure

Standalone for

updatability

Shared for 

spatial locality

Insight: Locality-First Skew-Aware Design
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Shared Packed Memory Array 
[ItaiKoRo81, BenderDeFa00]

Trades locality for 
updatability

Terrace implements the locality-first hierarchical design with cache-friendly 
data structures.

Vertex  
degree

Implementing the Hierarchical Skew-Aware Design

Contiguous for 
spatial locality

Standalone B-tree 
[BayerMc72]



Scan

Insert

Get

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays 
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].


Given a cache block size  and input size , B-trees and PMAs take  
block transfers to scan.


B-tree inserts take  transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs
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Problem: Neither data 
structure clearly wins for 
dynamic graphs because 

graphs require fast 
updates and scans


Solution: use both, 
depending on degree

PMA/B-tree 
runtime

B-tree better

Number of Elements

The theory does not 
capture sequential vs 

random access

PMA better



Exploiting Skewness for Cache-Friendliness
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The locality-first design in Terrace reduces cache misses during graph 
queries.

Query Ligra 
[ShunBl13]

Aspen 
[DhulipalaShBl19]

Terrace 
[PandeyWhXuBu21]

Breadth-first 
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the 
LiveJournal 

graph

Cache-friendliness translates into 
graph query performance 

Additional optimization: store 
some edges in-place for 

extra spatial locality



Terrace: Applying the Locality-First Strategy to 

Dynamic Graph Processing

In practice, Terrace is about 2x faster on graph query algorithms than 
Aspen while maintaining similar updatability.


Terrace’s cache-friendly design demonstrates the impact of the locality-
first strategy in graph processing.
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Understand locality: 
opportunities for 
spatial locality 


due to  skewness

Problem: Dynamic

graph processing

Exploit spatial locality with 
a cache-friendly skew-

aware data structure

Implementation of Terrace, 
a parallel dynamic-graph-
processing system based 

on the skew-aware design 
[PandeyWhXuBu21]

https://github.com/PASSIONLab/terrace

$$


