
Optimizing

Dynamic Graph Processing with

the Locality-First Strategy
Helen Xu

Lawrence Berkeley National Laboratory
ACDA Workshop

Real-World Graphs Are Sparse

Social networks Computational biology Road networks
…and others!

Sparse graphs, which have many fewer edges than the total possible
number of edges, underlie most real-world applications.

2

Sparsity disrupts locality due to the presence of many zeroes in the data.

Real-World Graphs Are Also Dynamic

3

Furthermore, many real-world sparse graphs are dynamic: they change
over time.

Updates

Systems for processing dynamic graphs support updates (e.g. edge
insertions and deletions) and queries (algorithms run on the graph).

Dynamic graphs disrupt locality because of the inherent tradeoff between
colocating and updating data (e.g., in CSR).

Multicore Optimization Enables

Fast Graph Queries and Updates

Despite these challenges to locality, high-performance dynamic-graph-
processing systems such as Aspen [DhulipalaShBl19] have taken huge steps
towards efficient queries and updates.

On 48 cores, Aspen runs the following queries on Twitter (2.4B edges):

4

Breadth-first search Betweenness centralityPageRank
0.32s 24.03s 4.72s

Times are human-measurable even with parallelism,
demonstrating the importance of efficient processing

Query Speed in Dynamic Graph Systems

5

Both systems support

parallelization.

Both systems run the

same algorithms

by implementing

the Ligra [ShunBl13]
abstraction.

Surprisingly, in some cases,
Terrace achieves speedup
on queries over Ligra
[ShunBl13], a static graph
system.

Breadth-first Search PageRank Betweenness
Centrality

Connected
Components

Terrace [PandeyWhXuBu21], a dynamic graph processing system, optimizes further
with a “locality-first design” that takes advantage of graph structure.

Normalized Speedup
of Terrace Over Aspen
[DhulipalaShBl19]

[PandeyWhXuBu21] Pandey, Wheatman, Xu, Buluç. “Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs.” SIGMOD ’21.

Updatability of Dynamic Graph Systems

Terrace

Aspen

[DhulipalaShBl19]

6

Insertion Throughput
(in millions of edges
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]

and added in batches

using the provided API.

Terrace achieves up to

48M inserts per second

and up to 9M deletes per

second. Future work

includes optimizing

batch deletions.

Terrace achieves the best of both worlds in query and update performance
by taking advantage of locality.

Dynamic Graph Processing and

the Locality-First Strategy

7

Understand locality
in dynamic graph

processing

Problem: Dynamic

graph processing

Exploit locality via data
structure design for

graphs

Add parallelism into data
structures

$$

Understanding Locality in Graph Queries

8

 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
 v = Q.dequeue()
 for all edges (v, w) in G.neighbors(v):
 if w not explored:
 label w as explored

Scan

Systems for processing dynamic graphs must support fast graph queries.

Vertex scans, or the processing of a vertex’s incident edges, are a crucial
step in graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E:
 intersect neighbors of u and v:
 if u and v share a neighbor w:

Scan

Triangle counting
Each neighbor list is scanned at
most once (no temporal locality),
so optimize for spatial locality

Most Graph Systems Separate Neighbor Lists

for Parallelization

9

Existing dynamic graph systems optimize for parallelism first with separate
per-vertex data structures e.g. trees [DhulipalaBlSh19], adjacency lists
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts spatial locality.

Simplified parallelization
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges

Dynamic Graph Processing and

the Locality-First Strategy

10

Understand locality
in dynamic graph

processing

Problem: Dynamic

graph processing

Exploit locality via data
structure design for

graphs

Add parallelism into data
structures

$$

Enhancing Spatial Locality by

Colocating Neighbor Lists

11

Cache misses between
vertices while reading all edges

in any order (e.g. PageRank)

Idea: Colocate neighbor lists in the same data structure, which avoids cache
misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]:
colocating data with

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21.

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

x

Dynamic Graphs Are Often Skewed
Real-world dynamic graphs, e.g. social network graphs, often follow a skewed
(e.g. power-law) distribution with a few high-degree vertices and many low-
degree vertices [BarabasiAl99].

Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter 64.56 99.51

Number of Twitter followers

Frequency

These graphs exhibit
high degree variance:

for example, the
maximum degree in
the Twitter graph is

about 3 million
[BeamerAsPa15]

12

Next step: refine the solution with a hierarchical design that takes
advantage of skewness while maintaining locality as much as possible.

13

Problem: High-degree
vertices slow down updates
for all vertices in the shared

data structure

Standalone for

updatability

Shared for

spatial locality

Insight: Locality-First Skew-Aware Design

14

Shared Packed Memory Array
[ItaiKoRo81, BenderDeFa00]

Trades locality for
updatability

Terrace implements the locality-first hierarchical design with cache-friendly
data structures.

Vertex
degree

Implementing the Hierarchical Skew-Aware Design

Contiguous for
spatial locality

Standalone B-tree
[BayerMc72]

Scan

Insert

Get

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].

Given a cache block size and input size , B-trees and PMAs take
block transfers to scan.

B-tree inserts take transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs

15

Problem: Neither data
structure clearly wins for
dynamic graphs because

graphs require fast
updates and scans

Solution: use both,
depending on degree

PMA/B-tree
runtime

B-tree better

Number of Elements

The theory does not
capture sequential vs

random access

PMA better

Exploiting Skewness for Cache-Friendliness

16

The locality-first design in Terrace reduces cache misses during graph
queries.

Query Ligra
[ShunBl13]

Aspen
[DhulipalaShBl19]

Terrace
[PandeyWhXuBu21]

Breadth-first
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the
LiveJournal

graph

Cache-friendliness translates into
graph query performance

Additional optimization: store
some edges in-place for

extra spatial locality

Terrace: Applying the Locality-First Strategy to

Dynamic Graph Processing

In practice, Terrace is about 2x faster on graph query algorithms than
Aspen while maintaining similar updatability.

Terrace’s cache-friendly design demonstrates the impact of the locality-
first strategy in graph processing.

17

Understand locality:
opportunities for
spatial locality

due to skewness

Problem: Dynamic

graph processing

Exploit spatial locality with
a cache-friendly skew-

aware data structure

Implementation of Terrace,
a parallel dynamic-graph-
processing system based

on the skew-aware design
[PandeyWhXuBu21]

https://github.com/PASSIONLab/terrace

$$

