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Notations

Let A, a symmetric n × n matrix of reals, we denote by :

λ1 ≤ λ2 ≤ · · · ≤ λn the n eigenvalues of A

u1, . . . ,un corresponding eigenvectors

We can show that all of its eigenvalues are real.
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Spectral Decomposition of Symmetric Matrices

Lemma

For a symmetric matrix A, if λi 6= λj then 〈ui ,uj〉 = 0.

Note

This implies that one can decompose Rn into Ui , where Ui is the space
spanned by all eigenvectors corresponding to that eigenvalue λi .
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Spectral Decomposition of Symmetric Matrices

Theorem

For a symmetric matrix A, we can write A =
∑n

i=1 λiuiu
T
i

This decomposition can be (approximately) computed in time polynomial.
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Eigenvalues of real symmetric matrices

Lemma

For an n × n real symmetric matrix A

λ1 = min
v∈Rn\{0}

vTAv

vT v

λn = max
v∈Rn\{0}

vTAv

vT v
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Special case: positive (semi)definite matrices

Definition

A symmetric matrix A is called positive semidefinite if vTAv ≥ 0 for every
nonzero vector v . A is said to be positive definite if vTAv is positive.

Lemma

For a symmetric matrix A, if λ1 ≥ 0 then A is positive semidefinite (equiv.
λ1 > 0⇒ A positive definite).
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A-norm

Definition

For a symmetric positive semidefinite matrix A we define the A-norm ‖·‖A
such that for a vector v

‖v‖A
def
=
√
vTAv

Lemma

For an n × n symmetric positive semidefinite matrix A and v ,w two
vectors the following holds

λ1‖v − w‖2 ≤ ‖v − w‖2
A ≤ λn‖v − w‖2

Hence the distortion in distances due to the A-norm is at most
√
λn/λ1.
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Graph Laplacian

Let G = (V ,E ) an undirected graph and its adjacency matrix A.
Consider a function f : V → R, where V = {v1, . . . , vn}, then

A

f (v1)
...

f (vn)

 =


∑

(1,i)∈E
f (vi )

...∑
(n,i)∈E

f (vi )
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Graph Laplacian

Definition

Consider G = (V ,E ) an undirected graph. Let A be its adjacency matrix
and D be its degree matrix (i.e., a diagonal matrix where Di ,i is equal to

the degree of vertex i). The graph Laplacian of G is L
def
= D − A.

For a graph function f : V → R, the graph Laplacian behaves as a discrete
analog of the usual Laplacian operator:

L

f (v1)
...

f (vn)

 =


∑

(1,i)∈E
f (v1)− f (vi )

...∑
(n,i)∈E

f (vn)− f (vi )
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Graph Laplacian

Lemma

L is a positive semidefinite matrix.
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Graph Laplacian

Proof (sketch).

Define the n × n matrices Le with e ∈ E by :

Le(i , j) =


−1 if (i , j) = e

1 if i = j and i ∈ e

0 otherwise

One can show that L =
∑

e∈E Le . Then for every nonzero vector v

vTLv =
∑
e∈E

vTLev

=
∑

(i ,j)∈E

(vi − vj)
2

≥ 0
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Graph Laplacian: First Eigenvalue

Note

L is not a positive definite matrix:

L

1
...
1

 = 0 ·

1
...
1


hence λ1 = 0.
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Graph Laplacian: Second Eigenvalue

Theorem

For L the Laplacian of a graph G , λ2 > 0 iff G is connected.
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Laplacian Systems of Linear Equations

Consider a linear system of equation Lx = b where L is the Laplacian of a
graph G .
If G is a connected graph, we know that λ1 = 0 and λ2 > 0. Since

u1 =

1
...
1


then ∀v ∈ Im(L), 〈v ,u1〉 = 0.
We’ll see that we can solve such a system if 〈b,u1〉 = 0.
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Pseudo-inverse

Definition

Let A ∈ Rn×n and u the linear operator associated to A in the canonical
basis. Then u|Im(u) is isomorphic and its inverse is denoted by A+. A+ is
called the pseudo-inverse of A.

Remark

Following what precedes, solving Lx = b when 〈b,u1〉 = 0 and G is
connected corresponds in fact to computing L+b.
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Laplacian Systems of Linear Equations

Theorem

There is an algorithm LSolve which given a linear system of equation
Lx = b and ε > 0, returns x such that

‖x − L+b‖L ≤ ε‖L+b‖L

where L+ is the pseudo-inverse of L.
It runs in O(τ log 1/ε), with τ the number of nonzero entries in L.
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Graph Conductance

Definition: Cut

A cut of G = (V ,E ) is a partition (S , S̄) of V .

Definition: Cutting edges

We denote by |E (S , S̄)| the number of edges that have one end point in S
and the other in S̄ .

Definition: Volume and conductance of a cut

Let (S , S̄) a cut of G = (V ,E ), we define the volume of the cut
Vol(S) =

∑
i∈S di , and the conductance

Φ(S) =
|E (S , S̄)|

min(Vol(S),Vol(S̄))
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Definition: The Sparsest-Cut problem

Given G = (V ,E ) compute Φ(G ) = min∅6=S⊂V Φ(S).
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A little help?

Problem 1

Sparsest-Cut is NP-hard! (Can be reduced from Max-Cut)

Definition: h-value

Let (S , S̄) be a cut. The h-value of the cut is defined as:

h(S) =
|E (S , S̄)|

Vol(S) · Vol(S̄)
· Vol(G )

Lemma

For all possible cut (S , S̄), we have: Φ(S) ≤ h(S) ≤ 2Φ(S).

Problem 2

Computing h is no easier than Φ!
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Two probability measures

Definition

We define a probability measure on the edges and one on the vertices the
following way:

ν(e) =
1

|E |
, ∀e ∈ E

µ(i) =
di

Vol(G )
=

di
2|E |

,∀i ∈ V

The two of them can be naturally extended to subsets of E (resp. V).

Lemma

Let (S , S̄) be a cut of G = (V ,E ) and 1S : i 7→ 1 if i ∈ S , 0 otherwise.
Then:

h(S) =
ν(E (S , S̄))

2µ(S)µ(S̄)
=

E(i ,j)←ν
(
(1S(i)− 1S(j))2

)
Ei←µEj←µ ((1S(i)− 1S(j))2)

h(G ) = min
x∈{0,1}n

E(i ,j)←ν
(
(xi − xj)

2
)

Ei←µEj←µ ((xi − xj)2)
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Real conductance

Definition: Real Conductance

Let G = (V ,E ) be a graph. We define the real conductance of G as:

hR(G ) = min
x∈Rn

Eij←ν
(
(xi − xj)

2
)

Ei ,j←µ×µ ((xi − xj)2)

Lemma

We immediately have the following result:

hR(G ) ≤ h(G ) ≤ 2Φ(G )
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Computing the real conductance

Definition: Normalized Laplacian

The normalized Laplacian L of a graph G is defined as:

L = D−1/2LD−1/2

Where D is the diagonal matrix with Di ,i = di ,∀i ∈ V .

Theorem

λ2(L) = hR(G )

Conclusion

We know how to compute this eigenvalue! We are now able to compute a
2-approximation to the Sparsest-Cut problem.
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Conclusion: final bounds

Theorem (Cheeger’s inequality) (admitted)

λ2(L)

2
≤ Φ(G ) ≤ 2

√
λ2(L)

Proof (sketch of the right hand side)

Show that Φ(G ) = miny∈Rn,µ1/2(y)=0
Eij←ν(|yi−yj |)

Ei←µ(|yi |) where µ1/2(y) is the

median over the measure µ of y.

Show that if there is an x ∈ Rn such that
Eij←ν((xi−xj )2)

Ei,j←µ×µ((xi−xj )2)
= ε then

there exists a y ∈ Rn with µ1/2(y) = 0 such that
Eij←ν(|yi−yj |)

Ei←µ(|yi |) ≤ 2
√
ε.

Conclude.
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Spectral cut Algorithm

Algorithm

Algorithm 1: Spectral Cut Algorithm

Data: G = (V ,E ) an undirected graph and V = {1, . . . , n}
Result: A subset S ⊂ V with Φ(S) ≤ 2

√
Φ(G )

D ← degree matrix of G
L← Laplacian of G
L ← D−1/2LD−1/2

y∗ ← arg miny∈Rn,〈y,D1/21〉=0
yTLy
yT y

x∗ ← D−1/2y∗

Re-index V so that x∗1 ≤ x∗2 ≤ . . . ≤ x∗n
Si ← {1, . . . , i} for i = 1, 2, . . . , n − 1
Return Si that has minimum conductance from among 1, . . . , n − 1
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A new problem

Definition: Balanced Edge-Separator

Given G = (V ,E ) and b ∈ (0, 1
2 ], the Balanced Edge-Separator

problem is to find a cut (S , S̄) such that

Φ(S) = min
(S ′,S̄ ′) s.t.min(µ(S ′),µ(S̄ ′))≥b

Φ(S ′)

Remark

The case b = 0 is in fact the Sparsest-Cut problem!

This problem is NP-Hard.
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Tackling Balanced Edge-Separator

Idea

We can call SpectralCut recursively to try and find a cut which is
b
2 -balanced. As long as the cut isn’t b

2 balanced, we can take the smallest
part of the cut out of the graph, and call SpectralCut on what is left
of the graph. Moreover we can at each step check that the second
eigenvalue of the normalized laplacian of the leftover graph isn’t too big,
and by doing so we will be able to give a bound on the conductance of the
cut we get (or certify that all cuts have at least a certain conductance).
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BalancedCut Algorithm

Algorithm 2: BalancedCut

Data: a graph G = ({1, 2, . . . , n},E), b ∈ (0, 1
2

] and target conductance γ ∈ [0, 1]

Result: a cut (S , S̄) or certify that all b-balanced cut have conductance at least γ
µG ← degree measure of G
H ← G
S ′ ← ∅
repeat
LH ← normalized laplacian of H
if λ2(LH) > 4γ then

return No
end
S ← SpectralCut(H)
S ′ ← arg min(µG (S), µG (V (H) \ S)) ∪ S ′

Swap S and V (H) \ S if the argmin was V (H) \ S
if min(µG (S ′), µG (V (G) \ S ′)) ≥ b

2
then

return (S ′, S̄ ′) and (S , S̄)
else

V ′ ← V (H) \ S
E ′ ← {ij s.t.i , j ∈ V ′} ∪ {ii s.t.ij ∈ E(V ′, S)}
H ← (V ′,E ′)

end

until;
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Analysis of BalancedCut

No case

If No is returned then every b-balanced cut in G has conductance more
than γ.

Other case

In the other case, BalancedCut returns a b
2 -balanced cut in G of

conductance at most O(
√
γ).
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Computing the largest eigenvalue: Power Method

Lemma

Let A ∈ Rn×n, ε > 0, k > 1
2ε log

(
9n
4

)
such that k ∈ N. Then the following

holds with probability at least 1
2 over v chosen uniformly at random from

the n-dimensional unit sphere:

|λn(A)| ≥ ‖A
k+1v‖
‖Akv‖

≥ (1− ε)|λn(A)|
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1st attempt

Idea

Notice how In − L = D−1/2AD−1/2 with A the adjacency matrix and D
the degree matrix. Also ∀i ∈ {1, . . . , n}, λi (In − L) = 1− λn−i+1(L). We
deduce that the largest eigenvalue of In − L is 1 and an eigenvector is
D1/21.

Theorem

By applying the Power Method orthogonally to D1/21 and with

ε = λ2(L)/2 and k = Θ
(

log(n)
λ2(L)

)
we can compute λ2(L) up by a factor 2

in time O
(
m log(n)
λ2(L)

)
.
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2nd attempt

Idea

Remark that 1/λ2(L) is the largest eigenvalue of L+, the pseudo-inverse
of L. Then applying the power method with ε = 1/2 and k = Θ(log(n))
on L+ is sufficient to compute λ2(L) up to a factor 2.

Inverse computation?

Computing L+ explicitly is hard.

Solution

We use the linear system solver we discussed before, LSolver.
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Computation of second eigenvector

Theorem

Given an undirected, unweighted graph G = (V ,E ) with n = |V | and
m = |E |, there exist an algorithm that finds a vector x in time O(m + n)
such that:

Eij←ν
(
(xi − xj)

2
)

E(i ,j)←µ×µ ((xi − xj)2)
≤ 2λ2(L)

Note

Recall that the condition in the BalancedCut algorithm was

λ2(LH) > 4γ and can now be rewritten as
Eij←ν((xi−xj )2)

E(i,j)←µ×µ((xi−xj )2)
> 2γ.
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Global vs Local

Remark

Eigenvalues are a global property of the graph. But a cut is by definition a
local part of the graph, even more when we look for small cuts.
This is one of the limitation of the previous part.

New motivation

New situation: assume this time we know where we want to look for a cut.
How can we take that into account?
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A local variation of SparsestCut

Definition

Let G = (V ,E ), u ∈ V and k ∈ N. The LocalSparsestCut problem is
to compute:

Φ(u, k) = min
T⊂V :u∈T ,Vol(T )≤k

Φ(T )

Note

We won’t be able to tackle this problem using global tools. How can we
adapt what we did before to solve this problem?
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The LocalSpectral Problem

Definition

On the left hand side is the optimization problem to compute λ2(L). On
the right hand side is the new local problem LocalSpectral(s, κ),
where s is called the seed vector and 0 ≤ κ < 1 is the correlation
parameter:

min xTLx min xTLx

s.t. xTDx = 1 s.t. xTDx = 1

(xTD1)2 = 0 (xTD1)2 = 0

x ∈ Rn (xTDs)2 ≥ κ
x ∈ Rn
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Solving LocalSpectral

Following theorems are hard, so we admit them

Theorem: Solution Characterization (admitted)

Let s ∈ Rn such that sTD1 = 0, sTDs = 1 and sDv2 6= 0 where v2 is the
normalized eigenvector of λ2(L). Also let 0 ≤ κ < 1. Then the optimal
solution x∗ to LocalSpectral(s, κ) is of the form x∗ = c(L− γD)+Ds,
where c is chosen such that norm of x∗ is 1 and γ is tuned such that
sTDx∗ = κ.

Theorem: Solution Computation (admitted)

For any ε > 0, a solution of value at most (1 + ε)λ(G , s, κ) can be
computed in time Õ(m/

√
λ2(L) log(1/ε)) using the Conjugate Gradient

Method.
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Approximating LocalSparsestCut

Lemma

For u ∈ V , LocalSpectral(G , v{u}, 1/k) is a relaxation of
LocalSparsestCut i.e. λ(G , v{u}, 1/k) ≤ Φ(u, k)

Theorem

Given an unweighted graph G = (V ,E ) a vertex u ∈ V and a positive
integer k , we can find a cut in G of conductance at most O(

√
Φ(u, k)) in

nearly linear time in the size of the graph.
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Improving the approximation

Theorem: Cut Improvement (admitted)

Let G = (V ,E ) and s ∈ Rn such that sTD1 = 0. Let also κ ≥ 0 be a
correlation parameter. Then for all sets T ⊂ V , let κ′ = (sTDvT )2 and
we have:

Φ(T ) ≥ λ(G , s, κ)

if κ ≤ κ′, else

Φ(T ) ≥ κ′

κ
λ(G , s, κ)
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