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In this abstract, we present a new method, called the multicenter method, that computes e�ciently a long range
force in a N body problem. Being kernel-independent, it is more general than the well known multipole method. The
multicenter method is based upon the idea of defining a subset of sources which we call “centers” and computing a
weighted contribution of these centers only. Unlike the multipole method, we have several centers and we compute
a polynomial of degree 1 (the number of selected sources depends on the expected accuracy). In this abstract, we
will present some of the linear algebra issues raised by the multicenter method : how the centers and the associated
weights are defined. We will also present some results on the computation of the electromagnetic field lines which was
one of the physical contexts for this work.

1 Define the centers

Let us define a set of n sources K such that the sources lie inside a ball Bc,r (c being the center and r the radius of
the ball) and a set T of n target points distributed on a sphere Sc,↵r with ↵ 2 R, ↵ > 1, ↵ is the separation criterion
between the sets K and T . The number of target points should be greater than the number of source points.

The idea is to compute the matrix of the kernels between the source points and some target points far away enough
from the source. More precisely, we compute the matrix AT ,K of the kernel between the 2 sets of points AT ,K(i, j) =
k(xTi , xKj ) and evaluate its rank in order to determine the leading source points i.e. the centers. When the distance
between the sets K and T increases, the rank of AT ,K decreases, therefore, we need fewer source points to get a good
representation of the entire source set. In order to find those points, we perform a QR factorization with column
pivoting of AT ,K :

AT ,K = QT ,T


RK,K

0T \K,K

�
⇧T
K,K (1)

where Q is orthogonal, R is upper triangular and ⇧ is a permutation matrix such that :

|r1,1| � |r2,2| � · · · � |rnK ,nK | and8i |ri,i| � ||Ri:j,j ||2 j = i + 1, . . . , nK (2)

Let us define a low-rank threshold ✏, the rank of AT ,K is given by :

r(✏) = min(r 2 N : kRr,r:nKk2 < ✏ max(kRi,i:nKk2)i=1,...,nK ) (3)

The leading r columns of AT ,K⇧K,K approximate AT ,K to an accuracy O(�r+1(A)). Let’s define the matrix re-
stricted to the leading columns r, AT ,C : AT ,K⇧K,K = [AT ,CAT ,K\C ]. The r first points of K define the r centers.
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Figure 1: Singular values of AT ,K

As a first simple example, we consider a set of source
points K homogeneously distributed inside a ball and a
set of target points T homogeneously distributed on a
sphere such that Rsphere = ↵Rball (↵ = 1, 10, 100, 1000
for the blue lines, the red ones, the green ones and the
black ones respectively). Figure (1) shows the singular
values of the kernel matrix AT ,K (represented by ⌥) as
well as the values |rii| resulting from the RRQR of AT ,K
(represented by .), see equation (1).
The singular values are well separated as long as the set
of points T is far enough from the source points set. De-
pending on the tolerance ✏, we obtain either 1, 4, 9, 16...

centers. The values |rii| provided by (1) follow the same behaviour than the singular values except from the clustering
which is not as good.
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2 Define the weights

As seen before, the rank of AT ,K allows to define a subset of the source points : the centers. Once the centers are
defined, the correlation between them and the other source points are defined by a ”barycentric matrix”. In order to
minimize the error, the barycentric BC,K matrix is defined as follows :

AT ,K⇧K,K =
⇥
QT ,C QT ,K\C

⇤ 
RC,C RC,K\C

0K\C,C RK\C,K\C

�
(4)

⇡
⇥
QT ,CRC,C QT ,CRC,K\C

⇤
(5)

= QT ,CRC,C
⇥
IC,C R�1

C,CRC,K\C
⇤

(6)

= AT ,CBC,K (7)

where BC,K =
h
IC,C bRC,K\C

i
⌘

⇥
IC,C R�1

C,CRC,K\C
⇤

By summing up the row entries of BC,K, we obtain the weight associated to each center. If the matrix AT ,K were full
rank, then there would be as many centers as source points in set K and the barycentric matrix BC,K would be the
identity matrix. To compute the resulting long-range force at one point P far away from the sources, we only need to
compute the sum of the weighted interactions between P and the centers.

3 Results

In this section, we compare 3 methods : the multipole method, the multicenter method and the direct method which
consists in taking into account the contributions of each source. Unlike the multipole and the multicenter methods,
the direct method does not do any approximation and, therefore, constitues our reference.
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Figure 2: Direct method: �, multipole method:
⌥, multicenter method: ⇤

Let’s consider a conductor formed by 3 rods and a plate. An electric
current circulates into the 3 tubes which induces a current in the
plate. An electromagnetic field is generated around the 3 tubes. We
want to visualize a magnetic field line close to the rods. To do that,
we need to solve the magnetic field line equations which requires to
compute the magnetic field ~B. ~B is the sum of the contributions of
each source point which can be computed either directly or by an
approximation method (FMM or multicenter). Figure (2) shows one
of the magnetic field lines generated around the rods on the left hand
side. On the right hand side, only the magnetic field line is repre-
sented, the results given by the three methods are placed on top of
each other. Both multipole and multicenter methods ensure a rela-
tively good accuracy, the results are comparable to those obtained
with the direct method.
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Figure 3: Multicenter versus FMM

For the next problem, we want to study the interaction
between two sets of points instead of one set of points
and one point only. It is of importance when it comes to
build the BEM-FEM system to solve for the electromag-
netic fields for example. The BEM system is dense and
solved through an iterative method such as GMRES or
PCG, therefore using either the FMM or the multicenter
method can be useful to accelerate the assembly of the
matrix as well as the operations for the matrix-vector
product.
Here, we consider 2 cubes of 1000 points each. We want
to compute the kernel matrix between those cubes with
both methods and compare their cost in terms of matrix-
vector product. Figure (3) shows the relative error induced on the kernel matrix against the number of entries in the
matrix for di↵erent separations (12, 20, 50, 200 for the blues lines, the red ones, the green ones and the pink ones
respectively). The dashed lines correspond to the multicenter method whereas the solid lines represent the FMM.
For a given distance between the cubes, the multicenter method requires less entries than the FMM to reach the
same accuracy on the kernel matrix therefore the low rank representation obtained is better and the operation for the
matrix-vector multiply will be more e�cient.
In order to improve the e�ciency of the matrix-vector product, following the example of the FMM, we intend to add
the multilevel aspect to the multicenter method. Work is in progress.


