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Abstract

We describe a new parallel sparse matrix-matrix

multiplication algorithm in shared memory using a

quadtree decomposition. Our implementation is nearly as

fast as the best sequential method on one core, and scales

quite well to multiple cores.

1 Introduction

Sparse matrix-matrix multiplication (or SpGEMM ) is a
key primitive in some graph algorithms (using various
semirings) [5] and numeric problems such as algebraic
multigrid [9]. Multicore shared memory systems can
solve very large problems [10], or can be part of a
hybrid shared/distributed memory high-performance
architecture.

Two-dimensional decompositions are broadly used
in state-of-the-art methods for both dense [11] and
sparse [1] [2] matrices. Quadtree matrix decompositions
have a long history [8].

We propose a new sparse matrix data structure and
the first highly-parallel sparse matrix-matrix multiplica-
tion algorithm designed specifically for shared memory.

2 Quadtree Representation

Our basic data structure is a 2D quadtree matrix
decomposition. Unlike previous work that continues the
quadtree until elements become leaves, we instead only
divide a block if its nonzero count is above a threshold.
Elements are stored in column-sorted triples form inside
leaf blocks. Quadtree subdivisions occur on powers of 2;
hence, position in the quadtree implies the high-order
bits of row and column indices. This saves memory in
the triples. We do not assume a balanced quadtree.

3 Pair-List Matrix Multiplication Algorithm

The algorithm consists of two phases, a symbolic phase

that generates an execution strategy, and a computa-

tional phase that carries out that strategy. Each phase
is itself a set of parallel tasks. Our algorithm does not
schedule these tasks to threads; rather we use a standard
scheduling framework such as TBB, Cilk, or OpenMP.

3.1 Symbolic Phase We wish to divide computa-
tion of C = A⇥B into e�ciently composed tasks with
su�cient parallelism. The quadtree structure gives a
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Figure 1: Computation of a result block using a list of
pairwise block multiplications.

natural decomposition into tasks, but the resulting tree
of sparse matrix additions is ine�cient. Instead we form
a list of additions for every result block, and build the
additions into the multiply step. We let C

own

represent
a leaf block in C, and pairs the list of pairs of leaf blocks
from A and B whose block inner product is C

own

.
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The symbolic phase recursively determines all the
C

own

and corresponding pairs.
We begin with C

own

 C, and pairs  (A,B). If
pairs only consists of leaf blocks, spawn a compute task
with C

own

and pairs. If pairs includes both divided
blocks and leaf blocks, we temporarily divide the leaves
until all blocks in pairs are equally divided. This
temporary division lets each computational task operate
on equal-sized blocks; it persists only until the end of
the SpGEMM.

Once the blocks in pairs are divided, we divide
C

own

into four children with one quadrant each and
recurse, rephrasing divided C = A⇥B using (3.1):

(3.2)

C1 = [(A1, B1), (A2, B3)]
C2 = [(A1, B2), (A2, B4)]
C3 = [(A3, B1), (A4, B3)]
C4 = [(A3, B2), (A4, B4)]

For every pair in pairs, insert two pairs into each
child’s pairs according to the respective line in (3.2).
Each child’s pairs is twice as long as pairs, but totals
only 4 sub-blocks to the parent’s 8.

3.2 Computational Phase This phase consists of
tasks that each compute one block inner product (3.1).
Each task is lock-free because it only reads from the
blocks in pairs and only writes to C

own

. We extend



Gustavson’s sequential algorithm [4] in Algorithm 1.
Our addition to Gustavson is a mechanism that

combines columns j from all blocks B
i

in pairs to
present a view of the entire column j from B. We then
compute the inner product of column j and all blocks
A

i

using a “sparse accumulator”, or SPA. The SPA can
be thought of as a dense auxiliary vector, or hash map,
that e�ciently accumulates sparse updates to a single
column of C

own

.
A and B are accessed di↵erently, so we organize

their column-sorted triples di↵erently. For constant-
time lookup of a particular column i in A, we use a hash
map with a i ! (o↵set

i

, length
i

) entry for each non-
empty column i. A CSC-like structure is acceptable, but
requires O(m) space. We iterate over B’s non-empty
columns, so generate a list of (j, o↵set

j

, length
j

). Both
organizers take O(nnz) time to generate. A structure
that merges all B

i

organizers enables iteration over
logical columns that span all B

i

.

Algorithm 1 Compute Task’s Multi-Leaf Multiply

Require: C
own

and pairs
Ensure: Complete C

own

for all (A
b

, B
b

) in pairs do

organize A
b

columns with hash map or CSC
organize B

b

columns into list
end for

merge all B organizers into combined B org
for all (column j, PairList

j

) in combined B org do

SPA {}
for all (A

b

, B
b

) in PairList
j

do

for all non-null k in column j in B
b

do

accumulate B
b

[k, j]⇥A
b

[:, k] into SPA
end for

end for

copy contents of SPA to C
own

[:, j]
end for

4 Experiments

We implemented our algorithm in TBB [7] and com-
pared it with the fastest serial and parallel codes avail-
able, on a 40-core Intel Nehalem machine. We test by
squaring Kronecker product (RMAT) matrices [6] and
Erdős-Rényi matrices.

Observe from Table 1 that QuadMat only has a
small speed penalty on one core compared to CSparse,
but gains with two or more cores.

5 Conclusion

Our algorithm has excellent performance, and has the
potential to be extended in several ways. Our next
steps include a triple product primitive that does not

Table 1: SpGEMM results on E7-8870 @ 2.40GHz - 40
cores over 4 sockets, 256 GB RAM. Note: CombBLAS is
an MPI code that requires a square number of processes.

Squared Matrix R16 R18 ER18 ER20

Each Input nnz 1.8M 7.6M 8.39M 33.6M
Output nnz 365M 2.96G 268M 1.07G

CSparse [3] 1p 14s 122s 9s 58s

CombBLAS [2]
1p 154s 1597s 64s 248s
9p 19s 155s 8s 34s
36p 8s 49s 3s 12s

QuadMat

1p 19s 150s 13s 111s
2p 10s 87s 8s 66s
9p 3s 21s 3s 18s
36p 2s 11s 2s 9s

materialize the entire intermediate product at any one
time, and computing AT ⇥ B with similar complexity
to A⇥B.
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[1] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert,
and C. E. Leiserson. Parallel sparse matrix-vector
and matrix-transpose-vector multiplication using com-
pressed sparse blocks. In Proc. 21st Symp. on Paral-
lelism in Algorithms and Arch., 2009.
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