
Scaling Iterative Solvers by Avoiding
Latency Overhead of Parallel Sparse Matrix Vector Multiplication

R. Oguz Selvitopia, Mustafa Ozdalb, Cevdet Aykanata

aDepartment of Computer Engineering, Bilkent University, Ankara 06800, Turkey
bStrategic CAD Labs of Intel Corporation, Hillsboro, OR, 97124, US

Parallel iterative solvers are the most widely used methods for solving sparse linear systems
of equations on parallel architectures. There are two basic types of kernels that are repeatedly
computed in these solvers: Sparse-matrix vector multiply (SpMV) and linear vector operations.
Since linear vector operations are performed on dense vectors, they are regular in nature and are
easy to parallelize. Conversely, SpMV operations generally require specific methods and techniques
for efficient parallelization due to irregular sparsity pattern of the coefficient matrix. In literature,
several partitioning models and methods are proposed for efficient parallel computation of SpMV
operations.

In a single iteration of the solver, SpMV operations cause irregular point-to-point (P2P) commu-
nication and inner product computations cause regular collective communication. The partitioning
techniques proposed in the literature generally aim at reducing communication volume incurred in
P2P communications, which loosely relates to latency overhead incurred in parallel SpMV opera-
tions. On current large-scale systems, the message latency overhead is at least as important as the
message volume overhead, especially in the case of strong scaling in which average message sizes
decrease with increasing number of processors. Our preliminary experiments on two large-scale
systems (an IBM BlueGene/Q and a Cray XE6) demonstrate that the startup time is as high as
transmitting four-to-eight kilobytes of data.

On the contrary to the studies that aim at hiding latency of collective communication opera-
tions [1] (by using nonblocking collective primitives and overlapping with computation), we propose
a methodology to directly avoid all latency overhead associated with P2P messages of SpMV op-
erations. Our methods rely on the observation that in most of the Krylov subspace methods, each
SpMV computation is followed by an inner product computation which involves output vector
of the SpMV. This introduces a write/read dependency on this vector between SpMV and inner
product computational phases.

In [2], we propose a novel computational rearrangement method to resolve the above-mentioned
computational dependency between these two computational phases. By doing so, we remove
the communication dependencies between these two phases and enable P2P communications of
SpMV and collective communications of inner products to be performed in a single communication
phase. The computational rearrangement reduces the number of synchronization points for each
SpMV and inner product computation pair by one, that is, the proposed scheme requires a single
synchronization point in a typical CG implementation. Then, we realize this opportunity to propose
a communication rearrangement method to avoid all latency overhead of P2P messages of SpMV
operations. This is achieved by embedding P2P communications into collective communication
operations. The proposed embedding scheme reduces both the average and the maximum number



of messages handled by a single processor to lgK in an iterative solver with K processors, regardless
of the coefficient matrix being solved.

The downside, however, is that the embedding scheme causes extra communication volume
due to forwarding of certain vector elements. To address this increase in message volume, two
iterative-improvement-based algorithms are proposed. The basic idea of these heuristics is to place
the processors that exchange high volume of data close to each other so that the store-and-forward
scheme required by the embedding method causes less forwarding overhead. This is a preprocessing
step as the partitioning itself and the running time of the described faster heuristic is lower than
the partitioning time up to 2048 processors.

The mentioned methods and techniques are validated on Conjugate Gradient method. The 1D
row-parallel algorithm is used for SpMV. We tested our methods on two large-scale high perfor-
mance computing systems Cray XE6 and IBM BlueGene/Q up to 2048 processors with 16 test
matrices from University of Florida Sparse Matrix Collection. With using proposed computational
and communication rearrangement, we show that we obtain superior scalability performance on
both architectures. Our findings indicate that the crucial factor to scale an iterative solver is to
keep the message latency overhead low, which dominate the message volume overhead at high
processor counts.

References

[1] P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned conjugate gradient algo-
rithm, Parallel Computing (0) (2013) –. doi:http://dx.doi.org/10.1016/j.parco.2013.06.001.
URL http://www.sciencedirect.com/science/article/pii/S0167819113000719

[2] O. Selvitopi, M. Ozdal, C. Aykanat, A novel method for scaling iterative solvers: Avoiding latency overhead of
parallel sparse-matrix vector multiplies, Parallel and Distributed Systems, IEEE Transactions on PP (99) (2014)
1–1. doi:http://dx.doi.org/10.1109/TPDS.2014.2311804.
URL http://www.computer.org/csdl/trans/td/preprint/06766662-abs.html


