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In recent years, graph analytics has become one of the most important and ubiquitous tools
for a wide variety of research areas and applications. Indeed, modern applications such as ad
hoc wireless telecommunication networks, or social networks, have dramatically increased the
number of nodes of the involved graphs, which now routinely range in the tens of millions and
out-reaching to the billions in notable cases.
We developed novel near linear (O(N)) methods for sparse graphs with N nodes estimating

the most important nodes in a graph, the subgraph centralities, and spectrograms, that is the
density of eigenvalues of the adjacency matrix of the graph in a certain unit of space.

Figure 1: Most central intersections in the European street network.

The method to compute subgraph centralities employs stochastic diagonal estimation [2]
and Krylov subspace techniques to drastically reduce the complexity which, using standard
methods, is typically O(N3). With this technique we can approximate the centralities in
a fast, highly scalable and accurate fashion, and thereby open the way for centrality based
big data graph analytics that would have been nearly impossible with standard techniques.
Subgraph centralities provide a wealth of information in many situations. For example, the
subgraph centralities can be used to identify possible bottlenecks in huge networks. Figure 1
visualizes the most central nodes in the European street network1 (part of the 10th DIMACS
challenge [1]) with 51 million nodes. Our e�cient parallel implementation only required 800
seconds to compute the centralities on 16 threads.

Figure 2: It is almost impossible to determine if the graphs (left and middle column) are the
same for a human observer.

In the age of big data it becomes increasingly di�cult to compare and visualize graphs.
The spectrogram helps to visually interpret and compare data, for example the two leftmost

1
https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/europe_osm.html



graphs in Fig. 2. For humans it is impossible to compare the two graphs. In fact, both graphs
are exactly the same and one of the graphs can be transformed into the other by a set of
simple permutations. The spectrogram shown on the right in Fig. 2 captures the essential
characteristic of the graphs immediately and graphically. It transforms complex graphs into a
1-dimensional vector - a simple picture that fosters convenient interpretation.
Spectrograms are powerful in capturing the essential structure of graphs and provide a natu-

ral and human readable (low dimensional) representation for comparison. How about compar-
ing graphs that are almost similar (see Figure 3)? Of course, this is a massive dimensionality
reduction, however at the same time the shape of the spectrogram yields a tremendous wealth
of information.

Figure 3: Almost similar graphs and spectrograms

Solving the underlaying eigenvalue problem is getting much harder to master in the era of
big data. The cubic complexity of dense methods and the limitation of iterative techniques to
look deep into the interior of the spectrum at an acceptable cost, call for a new approach. Our
approach starts by estimating �

min

and �
max

of the adjacency matrix by a few steps of Lanczos,
in order to shift and scale the adjacency matrix to have its spectrum in the interval [�1, 1].
Next, we divide the range [�1, 1] in the number of requested bins µ, known as inflection points.
Subsequently, we estimate the number of eigenvalues below µ, using trace estimation techniques
(similar to [3, 2]) of the Fermi-Dirac distribution function, to compute the spectrogram.
In order to tackle arising big data challenges an e�cient utilization of available HPC resources

is key. Both developed methods exhibit an e�cient parallelization on multiple hierarchical
levels. For example, computing the spectrogram can be parallelized on three levels: bins and
matrix-vector products can be computed independently, and each matrix-vector product can
be computed in parallel. The combination of a highly scalable implementation and algorithmic
improvements enable us to tackle big data analytics problems that are nearly impossible to
solve with standard techniques. A broad spectrum of applications in industrial and societal
challenges can profit from fast graph analytics.
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