
NETWORKIT: AN INTERACTIVE TOOL FOR HIGH-PERFORMANCE NETWORK ANALYSIS

Christian L. Staudt, Aleksejs Sazonovs, Henning Meyerhenke

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT)

Summary

We introduce NetworKit, an open-source package for high-

performance analysis of large complex networks. Complex

networks are equally attractive and challenging targets

for data mining, and novel algorithmic solutions as well

as parallelism are required to handle data sets containing

billions of connections [4, 5]. Our goal is to package results

of our algorithm engineering efforts and put them into the

hands of domain experts.

The package is a hybrid combining the performance of

kernels – written in C++ and parallelized with OpenMP –

with a convenient interactive interface written in Python.

The package supports general multicore platforms and

scales from notebooks to workstations to compute servers.

In comparison with related software for network analysis,

we propose NetworKit as the package which satisfies all

of three important criteria: High performance enabled

by parallelism, interactive workflows and integration into

an ecosystem of tested tools for data analysis and sci-

entific computation. The feature set includes standard

network analytics kernels such as connected components,

clustering coefficients, community detection, core decom-

position, assortativity and centrality. Applying these to

massive networks is enabled by efficient algorithm design,

parallelism and approximation. Furthermore, the package

comes with a collection of graph generators and has basic

support for visualization and dynamic networks. With

the current release, we aim to present and open up the

project to a community of both algorithm engineers and

domain experts.

Features

NetworKit has a growing feature set and is built for exten-

sibility. Current features include:

Community detection is the task of identifying groups

of nodes which are significantly more densely con-

nected among each other than to the rest of the net-

work. NetworKit includes state-of-the-art heuristics

with efficient parallel implementations for partitioning

the network into natural modules [7].

Clustering coefficients quantify the tendency of rela-

tions in a network to become transitive by looking at

the frequency of closed triangles. NetworKit supports

both exact calculation and approximation.

Degree distribution and assortativity play an im-

portant role in characterizing a network: Complex

networks tend to show a heavy tailed degree distribu-

tion which follow a power-law with a characteristic

exponent [1]. Degree assortativity is the correlation

of degrees for connected nodes. NetworKit makes it

easy to estimate both.

Components and cores are related concepts for subdi-

viding a network: All nodes in a connected component

are reachable from each other. k-cores/k-shells result

from successively peeling away nodes of degree k.

Centrality refers to the relative importance of a node

within a network. Different ideas of importance are

expressed by betweenness, PageRank and eigenvec-

tor centrality. Betweenness is approximated with a

bounded error to be applicable to large networks.

Standard graph algorithms such as finding indepen-

dent sets, computing approximate maximum weight

matchings, breadth-first and depth-first search or

finding shortest paths.

Generative models aim to explain how networks form

and evolve specific structural features. NetworKit

has efficient generators for basic Erdős-Rényi ran-

dom graphs, the Barabasi-Albert and Dorogovtsev-

Mendes models (which produce power law degree dis-

tributions), the Chung-Lu and Havel-Hakimi model

(which replicate given degree distributions, the former

in expectation, the latter only realizable ones).

Visualization functionality which enables the user to

draw smaller networks to the IPython Notebook or

files.



Design Goals

NetworKit is designed to stand out in three areas:

Performance Algorithms and data structures are se-

lected and implemented with high performance and par-

allelism in mind. Some implementations are among the

fastest in published research. For example, community

detection in a 3 billion edge web graph can be performed

on a machine with 16 physical cores and 256 GB of RAM

in a matter of minutes.

Interface Networks are as diverse as the series of ques-

tions we might ask of them - for example, what is the

largest connected component, what are the most central

nodes in it and how do they connect to each other? A

practical tool for network analysis should therefore avoid

restricting the user to fixed and predefined tasks, as most

static command line interfaces do. Rather, the aim must

be to create convenient and freely combinable functions.

In this respect we take inspiration from software like R,

MATLAB and Mathematica, as well as a variety of Python

packages. An interactive shell, which the Python lan-

guage provides, meets these requirements. While Net-

worKit works with the standard Python 3 interpreter,

combining it with the IPython Notebook allows us to in-

tegrate it into a fully fledged computing environment for

scientific workflows [6]. It is also straightforward to set

up and control a remote server for heavy computations.

Integration As a Python module, NetworKit enables

seamless integration with Python libraries for scientific

computing and data analysis, e. g. pandas for data frame

processing and analytics, matplotlib for plotting, networkx

for additional network analysis tasks, or numpy and scipy

for advanced numeric and scientific computation. Further-

more, NetworKit aims to support a variety of input/output

formats, for example export to the graphical network

analysis software Gephi [2].

Implementation

Core data structures and algorithms of NetworKit are

implemented in C++ using the C++11 standard, which

allows the use of object-oriented and functional program-

ming concepts without sacrificing performance. The graph

data structure provides parallel iterators over node and

edge sets using different load balancing schemes. Shared-

memory parallelized is realized with OpenMP. Classes

are then exposed to Python via the Cython toolchain [3]:

Wrapper classes are converted to C++ code via the Cython

compiler, then compiled and linked with the core into a

native Python extension module. Additional functionality

and a convenient interface is implemented in pure Python,

yielding the final Python module.

C++ / OpenMP

Data Structures I/O TestsAlgorithms

Cython

Python
Task-oriented Interface

Additional
Functionality

Pythonized Classes

Wrapper Classes

IP[y]

NetworKit

numpyscipy pandas networkxmatplotlib

IPython Notebook

Figure 1: NetworKit architecture

Open Source

NetworKit is published1 under the permissive MIT Li-

cense to encourage review, reuse and extension by the

community. We invite algorithm engineers and potential

users from various research domains to benefit from and

contribute to the development effort. ¿¿¿¿¿¿¿ other

References

[1] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: a python
package for analysis of heavy-tailed distributions. PLOS ONE,
9(1):e85777, 2014.

[2] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open
source software for exploring and manipulating networks. In
ICWSM, pages 361–362, 2009.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing in
Science & Engineering, 13(2):31–39, 2011.

[4] U. Brandes and T. Erlebach. Network analysis: methodological
foundations, volume 3418. Springer, 2005.

[5] M. Newman. Networks: an introduction. Oxford University
Press, 2010.

[6] F. Perez, B. E. Granger, and C. Obispo. An open source frame-
work for interactive, collaborative and reproducible scientific
computing and education, 2013.

[7] C. L. Staudt and H. Meyerhenke. Engineering high-performance
community detection heuristics for massive graphs. arXiv
preprint arXiv:1304.4453.

1http://www.network-analysis.info

http://www.network-analysis.info

	Features
	Design Goals
	Implementation
	Open Source

