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Introduction

Complex networks such as web graphs or social networks

have become a research focus [1]. Such networks have

many low-degree nodes and few high-degree nodes. They

also have a small diameter, so that the whole network is

discovered within a few hops. Various emerging applica-

tions produce massive complex networks whose analysis

would benefit greatly from parallel processing. Parallel

graph algorithms, in turn, often require a suitable network

partition, motivating graph partitioning (GP).

Given a graph G = (V,E) with (optional) edge weight

function ω and a number of blocks k > 0, the GP prob-

lem asks for a partition of V into blocks V1, . . . , Vk such

that no block is larger than (1 + ε) · d |V |k e, where ε ≥ 0

is the allowed imbalance. When GP is used for parallel

processing, each processing element (PE) usually receives

one block, and edges running between two blocks model

communication between PEs. The most widely used ob-

jective function is the edge cut, the total weight of the

edges between different blocks. To model the commu-

nication cost of parallel iterative graph algorithms, the

maximum communication volume (MCV) can be more

accurate [4]. MCV considers the worst communication

volume taken over all blocks Vp (1 ≤ p ≤ k) and thus pe-

nalizes imbalanced communication: MCV (V1, . . . , Vk) :=

maxp

∑
v∈Vp

|{Vi | ∃{u, v} ∈ E with u ∈ Vi 6= Vp}|.
For solving optimization tasks such as GP on large net-

works, multilevel methods (consisting of recursive coarsen-

ing, initial partitioning, successive prolongation and local

improvement) are preferred in practice. Partitioning static

meshes this way is fairly mature. Yet, the structure of

complex networks challenges current tools. One key issue

for most multilevel graph partitioners is coarsening.

Here we present two independent improvements to coars-

ening. The first one uses the established framework of

contracting edges computed as matching. Yet, it defines

a new edge rating which indicates with non-local informa-

tion how much sense it makes to contract an edge and

thus guides the matching algorithm. The second approach

uses cluster-based coarsening and contracts larger sets of

nodes into a supernode, yielding fewer levels.

New Coarsening Approaches

Conductance-based Edge Rating. Let the terms cut

and cut-set refer to a 2-partition (C,C) of a graph

and to the set S(C) of edges running between C and

C, respectively. The graph clustering measure conduc-

tance [5] relates the size (or weight) of the cut-set to

the volumes of C and C. More precisely, cond(G) :=

minC⊂V
|S(C)|

min{vol(C),vol(C)} , where the volume vol(X) of a

set X sums over the (weighted) degrees of the nodes in X.

An edge rating in a multilevel graph partitioner should

yield a low rating for an edge e if e is likely to be contained

in the cut-set of a “good” cut. In our approach a good

cut is one that has low conductance and is thus at least

moderately balanced. A loose connection between conduc-

tance and MCV can be established via isoperimetric graph

partitioning [3]. Our approach to coarsen a graph with a

new edge rating is as follows. (i) Generate a collection C
of moderately balanced cuts of G with a low conductance

value. (ii) Define a measure Cond(·) such that Cond(e)

is low [high] if e is [not] contained in the cut-set of a cut

in C with low conductance. (iii) Use the new edge rat-

ing ex cond({u, v}) = ω({u, v}) Cond({u, v})/(c(u)c(v))

as weights for an approximate maximum weight matching

algorithm A, where c(x) refers to the weight of node x.

The higher ex cond(e), the higher the chances for e to be

contracted. (iv) Run A and contract the edges returned

in the matching.

We arrive at a collection C of |V |−1 moderately balanced

cuts of G by (i) computing connectivity-based “contrast”

values for the edges of G, (ii) computing a minimum span-

ning tree Tm of G w. r. t. these values, and (iii) letting

C consist of G’s fundamental cuts w. r. t. Tm. We want

the contrast value γ(e) of an edge e to be high if e is part

of “many” connections via shortest paths in G. Based on

a collection T of rooted spanning trees of G, this means

that (i) e is contained in many trees from T and (ii) e is

not involved in small cuts that separate a small subgraph

of G from G’s “main body”. We achieve this by setting

γ({u, v}) = min{nT (u, v), nT (v, u)}, where nT (u, v) de-

notes the number of trees in T containing e such that

u is closer to the tree’s root than v. Cond(·) is finally



defined such that Cond(e) is low [high] if e is [not] con-

tained in the cut-set of a cut in C with low conductance:

Cond(e) = minC∈C,e∈S(C)(cond(C)).

Cluster-based Coarsening. As an alternative approach

to coarsening networks with a highly irregular structure,

we propose a more aggressive coarsening algorithm that

contracts size-constrained clusterings computed by a label

propagation algorithm (LPA). LPA was originally pro-

posed by Raghavan et al. [7] for graph clustering. It is

a fast, near-linear time algorithm that locally optimizes

the number of edges cut. Initially, each node is in its own

cluster/block. In each of the subsequent rounds, the nodes

of the graph are traversed in a random order. When a

node v is visited, it is moved to the block that has the

strongest connection to v (with some tie-breaking mecha-

nism). The original process is repeated until convergence,

each round takes O(n + m) time. Here, we perform at

most ` iterations of the algorithm, where ` is a tuning

parameter, and stop the algorithm if less then 5% of the

nodes changed its cluster during one round. Hence, we do

not face the occasional instabilities of the original algo-

rithm. Most importantly, we adapt LPA such that clusters

cannot grow beyond a certain size. This is done to respect

the imbalance criterion of GP.

We integrate further algorithmic extensions such as

modified iterations over the node set within LPA, ensemble

clusterings, and iterated multilevel schemes. They are

described in more detail in the corresponding full paper.

To compute a graph hierarchy, the clustering is con-

tracted by replacing each cluster with a single node, and

the process is repeated recursively until the graph is small.

Here we aim at partitioning for low edge cuts with this

method. The intuition for achieving this goal is that a

good clustering contains only few edges between clusters.

Implementation and Experimental Results

Experimental results have been obtained by implementing

our new methods within the framework of the state-of-

the-art graph partitioner KaHIP [9].

Conductance-based Edge Rating. KaHIP contains a

reference implementation of the edge rating ex alg(·),
which yielded the best quality for complex networks so

far [8]. In addition to our new edge rating ex cond(·), we

have integrated a greedy postprocessing step that trades

in small edge cuts for small MCVs into KaHIP. Our ex-

periments show that greedy MCV postprocessing alone

improves the partitions of our complex network benchmark

set in terms of MCV by about 11% with a comparable run-

ning time for both ex alg(·) and ex cond(·). Additional

bipartitioning experiments (MCV postprocessing included)

show that, compared to ex alg(·), the fastest variant of

our new edge rating further improves the MCVs by 10.3%,

at the expense of an increase in running time by a factor of

1.8. Altogether, compared to previous work on partition-

ing complex networks with state-of-the-art methods [8],

the total reduction of MCV amounts to 20.4%.

Cluster-based Coarsening. For the second set of experi-

ments, KaHIP uses the hierarchy computed by cluster-

based coarsening and its own initial partitioning as well

as existing local search algorithms for refinement on each

level, respectively. Some algorithm configurations also use

the size-constrained LPA as local search procedure. We

compare against the established tools kMetis, hMetis, and

Scotch, all in graph partitioning mode.

Depending on the algorithm’s configuration, we are able

to compute the best solutions in terms of edge cut or

partitions that are comparable to the best competitor in

terms of quality, hMetis, while being nearly an order of

magnitude faster on average. The fastest configuration

partitions a web graph with 3.3 billion edges using a single

machine in about ten minutes while cutting less than half

of the edges than the fastest competitor, kMetis.

Accompanying Publications. Details can be found in

the respective papers [2, 6] and their full arXiv versions.
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