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Numerous applications focus on the analysis of entities and the connections between them, and such data are
naturally represented as graphs. In particular, the detection of a small subset of vertices with anomalous coordinated
connectivity is of broad interest, for problems such as detecting strange tra�c in a computer network or unknown
communities in a social network. These problems become more di�cult as the background graph grows larger and
noisier and the coordination patterns become more subtle. In this talk, we present a statistical framework addressing
this cross-mission challenge and the computational challenges involved when the data sets are very large.

The statistical framework has been developed as part of an e↵ort called Signal Processing for Graphs (SPG),
where signal processing concepts are applied to graph data in order to find these anomalies [3]. The SPG framework
determines statistically whether, for the observed data, an anomalous subgraph is detected (rejection of the null
hypothesis that there is no anomalous subgraph) or not (acceptance of the null hypothesis). Detection algorithms
in the SPG framework are based on the concept of graph residuals, formed by subtracting the expected graph data
from the observed graph data. The detection framework is designed to detect significant residuals concentrated on
a small subset of vertices. The SPG processing chain has several stages including temporal integration of graph
data, construction of the expected topology graph, dimensionality reduction, anomalous subgraph detection, and
identification of the subgraph’s vertices. Dimensionality reduction is a particularly important step, being the most
computationally complex, and will be the primary focus of the presentation.

Dimensionality reduction is frequently done by decomposing the residual matrix through eigendecomposition
(although SVD would work as well). While relatively strong signals can be detected with only one eigenvector, more
powerful detection methods needed to detect more subtle anomalies may require hundreds of eigenvectors. Thus,
our initial e↵orts improve the performance of this step have focused on speeding up the solution of the eigensystem,
Bxi = �ixi, where B = A � E[A] is the residual matrix. For the purpose of this work, we have focused on the
modularity matrix [4], where the expected value is a rank-1 approximation to the observed data, E[A] = kk

T
/(2M),

where M is the number of edges in the graph and k is the degree vector (assuming undirected edges for simplicity).
We use the Anasazi eigensolver [2] to solve our eigensystem, allowing us to find anomalies in very large graphs
in a reasonable amount of time. In particular, we use the block Krylov-Schur method to find the eigenvectors
corresponding to the eigenvalues with the largest real components (which correspond to the largest residuals). The
presentation will demonstrate the use of Anasazi to find eigenpairs in graphs with over four billion vertices.

Figure 1a shows the run time to find the first eigenvalue of a 223-vertex R-Mat matrix (a=0.5, b=0.125, c=0.125,
with an average of 8 nonzeros per row) as the number of cores increases. When a simple one-dimensional distribution
(1D, blue curve) is used, the scalability is limited and the run time actually increases for more than 1024 cores. 1D
distributions are the de facto standard and tend to work well for traditional computational science and engineering
problem. However, for matrices derived from power-law graphs, 1D partitioning tends to result in all-to-all com-
munication in the sparse matrix-vector multiplication (SpMV) operation that dominates the eigensolver run time.
Figure 1 shows the communication patterns for 1D distributions of a more traditional finite di↵erence matrix (1b)
and the R-Mat matrix ( 1c). In these illustrations, the color corresponds to amount of data communicated between a
pair of processes (white represents no communication, blue represents little communication, and red represents much
communication, with the maximum value (red) being set to be the number of rows divided by the number of cores).
The 1D distribution works well for the finite di↵erence matrix, with each process communicating with at most two
other processes. However, for the R-Mat matrix, each process has to communicate with every other process.

With 1D distributions, solving our eigendecomposition problem for very large power-law graphs is infeasible
with our runtime requirements. However, there has been recent work on using two-dimensional (2D) distributions
that bound the number of messages to be communicated in the resulting SpMV operation. In Figure 1a, we show
the improved results for two of these 2D distributions: one based on a random partitioning of rows/columns with
an imposed 2D block Cartesian structure (2DR, red line, [5]) and one that uses hypergraph partitioning (with the
Zoltan 1D hypergraph partitioner) instead of random partitioning to improve the communication volume (2DH, green
line, [1]). Using these 2D methods, we are able to get more reasonable performance scaling and find eigenvectors for
large graphs, with the 2DH method performing particularly well. In this talk, we present these results and further
analysis of how these 2D methods can be used in practice.
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Figure 1: Strong scaling results for R-Mat matrix (a). Communication patterns (b,c) for 1D distributions over 64 cores. Row
represents source process and column represents the destination process. Color corresponds to amount of data communicated
(with maximum value being number of rows divided by number of cores). Jobs run on National Energy Research Scientific
Computing Center (NERSC) machine Hopper.

The challenge with 2DH is its relative complexity in computing the distribution. For an 8-million-row R-Mat
problem, approximately 40,000 SpMV operations are required to amortize the additional cost of calculating the 2DH
distribution rather than 2DR. Since we typically need at most a few thousand SpMV operations in our eigensolver,
the 2DH distribution must be e↵ective for multiple observed graphs to be useful. We explored this e↵ectiveness using
a simple dynamic graph model in which we partition an initial graph and use our R-Mat generator to add more edges
(using the defined distribution) to generate a sequence of additional graphs. Figure 2 shows the runtime (normalized
by the number of edges) of the SpMV operations for the 2DR and 2DH distributions applied to several graphs that
evolve from an initial graph containing 30% of the edges in the final graph. Although the 2DH distribution loses
some of its advantage over the 2DR distribution, it still has a significant advantage at the final graph. Thus, it may
be possible to e↵ectively amortize the expensive 2DH distribution over several graphs and use this distribution to
our computational advantage. We plan to explore this further for additional dynamic graph models.
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Figure 2: SpMV time in seconds (normalized by number of nonzeros) as graph evolves.
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