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Abstract 

 
        We show that a sufficiently large Random Geometric Graph G(n, r) can be efficiently partitioned 
into disjoint connected bipartite subgraphs such that a sequence B1, B2,   …,   Bk of these subgraphs 
comprising over 85% of the vertices of G(n, r) have vertex sets that are either dominant sets or (1 - ε) 
dominating for small ε. These subgraphs are applicable to the problem of backbone partitioning in 
wireless   sensor   networks   (WSN’s)   where each backbone is desired to be connected, dominating, and 
amenable to efficient routing. Bipartite subgraphs of an RGG are provably planar, so deadlock free routing 
is readily available for these backbone subgraphs. We first employ smallest-last coloring and show that 
the initial k color sets sufficient to include about 50% of the vertices of G(n, r) are about the same size. 
We  then  employ  an  adaptive  “relay  coloring”  of  the  remaining  vertices  to  extract  k more independent sets 
matched with the initial  sets  as  paired  “relay  sets”  to  achieve  our  bipartite  subgraph  partition. 
        We provide results from extensive tests for various sizes of RGG’s  and  also  for   random  geometric  
graphs with vertices on the sphere. For the spherical case we obtain that the average face size in the 
bipartite subgraphs is generally between five and six, which is a further desirable property for routing 
when  these  subgraphs  are  considered  as  backbones  for  WSN’s  on  the  surface  of  the  earth. 
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1. INTRODUCTION 

        Let a random geometric graph (RGG) denote a graph G(n, r) with vertex set formed by choosing n 
points in a uniform random manner on the unit square, and introducing an edge between every vertex pair 
whose Euclidian distance is less than r. Our problem is to partition the majority of vertices into k disjoint 
sets {V1, V2,  …  Vk} whose induced subgraphs <V1>, <V2>,  …,  <Vk> are connected bipartite subgraphs 
with each part an independent set that dominates all or nearly all n vertices of G(n, r). We desire to create 
such a partition efficiently so as to be applicable for applicable with linear time scalability   for  RGG’s  
with from one thousand to several million vertices and average degrees up to several hundred. Regarding 
uniformity, the partition should yield subgraphs of reasonably similar size and structure. Regarding the 
total partition size we seek that the bipartite subgraphs collectively include a large majority of the n 

vertices, e.g. ∑ ||ೖ

 ≫ ଵ

ଶ. 
        This  problem  is  motivated  by  the  extensive  research  on  wireless  sensor  networks  (WSN’s)  which  are  
typically modeled by RGG’s [1], [2], [3], [4], [5], [6]. 
        The partition V1|V2|…|Vk with S the  residual  “surplus”  vertices  of  the  RGG, allows that each bipartite 
subgraph <Vi> can serve as a backbone for monitoring essentially the whole region and connectivity 
allows for messages to be routed through each backbone. To preserve sensor lifetime the monitoring 
function activity may be rotated through the k backbones. The property that each backbone has two 
disjoint sets each dominating (1 - ε) vertices of the graph for very small ε (e.g. ε<0.01) gives high overall 
monitoring effectiveness to the resulting backbone system. 



        Previous research investigating fully dominating set partitions has focused on the minimum degree 
δ(G(n, r)) and attempted to find up to δ + 1 suitable backbones. The minimum degree is problematic due 
to the boundary effect in RGG’s   and  we   avoid   this   issue   by   shifting   our   focus   in   two  ways.   First  we  
determine the number of parts k by requiring they collectively include a large majority of the sensors. In a 
second direction we also look at spherical random geometric graphs Gs(n, r) where n vertices are placed 
at random on the surface of the unit sphere which supports the important application of sensor backbone 
formations spanning the globe. Note that spherical Gs(n, r) provides that all vertices have an isomorphic 
probabilistic environment of adjacent neighbors without any boundary bias. 
        Our bipartite subgraph partitioning algorithms proceeds in two phases employing a greedy selective 
coloring algorithm in each phase. In the first phase smallest-last coloring of G(n, r) is determined with k 
determined so that the first k-color sets, denoted P1, P2,…,  Pk, are chosen so that ∪ 𝑃 includes at least ଶ 
vertices termed primary independent sets. In a second carefully crafted coloring phase of the remaining 
vertices (“relay  candidates”) we sequentially and in a greedy manner assign each vertex to a relay color 
set Ri, 1≤i≤k, based primarily on the vertex having the greatest number of adjacencies in Pi, also 
maintaining that each Ri is an independent set. Then the bipartite subgraph on 𝑃 ∪ 𝑅, is searched to 
determine the large component with the occasional smaller components or isolated vertices deleted into 
the surplus set. 

2. RESULTS 

Screenshots of benchmark of RGG G(6400, 0.08) on square model and sphere model: 
 

Original graph SL-colored graph RL-colored graph Backbone example 

    
Max. degree: 175 (Pink) 
Min. degree: 34 (Green) 

Used colors: 64 Primary/Relay colors:24 
Backbones: 24 

Components: 1 
Dominent: 100% 

    
Max. degree: 85 (Pink) 
Min. degree: 35 (Green) 

Used colors: 36 Primary/Relay colors:13 
Backbones: 13 

Components: 1 
Dominent: 100% 

 
 
 



Table 1. Simulation results on the unit square model. 
Topology G(3200, r) G(6400, r) G(12800, r) 

r 0.06 0.08 0.1 0.06 0.08 0.1 0.06 0.08 0.1 
Min. degree 10 14 28 14 37 44 35 63 106 
Max. degree 53 94 126 104 164 23 184 312 466 
Avg. degree 33.94 59.80 91.83 68.63 119.24 184.82 137.57 240.87 368.06 

SL-coloring colors  23 35 50 40 62 92 72 116 157 
Backbones (BB) 8 13 19 15 24 35 27 45 67 

Avg. BB size 344.25 213.08 145.00 376.93 230.63 155.31 409.59 244.78 163.75 
Avg. BB degrees 2.38 2.58 2.72 2.63 2.81 2.88 2.88 2.97 2.99 

Avg. BB components 5.88 2.46 1.42 3.33 1.25 1.20 1.48 1.16 1.01 
Avg. BB faces 73.00 66.31 54.79 126.47 96.08 70.74 183.74 121.56 83.43 

Avg. BB face sizes 12.04 8.60 7.39 8.27 6.82 6.37 6.48 6.02 5.91 
Avg. BB dominates 99.97% 99.95% 99.99% 99.97% 99.99% 99.99% 99.99% 99.99% 99.99% 

 
Table 2. Simulation results on the unit sphere model. 

Topology G(6400, r) G(12800, r) G(25600, r) 
r 0.06 0.08 0.1 0.06 0.08 0.1 0.06 0.08 0.1 

Min. degree 9 20 36 25 52 90 58 114 188 
Max. degree 41 60 95 69 113 175 128 215 309 
Avg. degree 23.02 40.89 63.86 46.07 81.83 128.00 92.14 163.92 255.96 

SL-coloring colors  18 26 37 29 46 65 50 82 115 
Backbones (BB) 6 10 14 10 17 25 19 31 47 

Avg. BB size 938.17 585.7 409.00 1091.30 659.47 443.36 1189.00 711.10 469.13 
Avg. BB degrees 2.22 2.43 2.67 2.57 2.79 2.94 2.82 3.02 3.10 

Avg. BB components 29.5 6.2 1.64 4.50 1.82 1.04 1.84 1.10 1.00 
Avg. BB faces 135.83 134.5 140.29 321.00 265.35 210.88 490.79 364.71 261.21 

Avg. BB face sizes 17.48 11.42 8.02 9.10 7.07 6.27 6.96 5.92 5.59 
Avg. BB dominates 99.95% 99.98% 100% 99.99% 100% 100% 100% 100% 100% 
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