
Characterizing asynchronous broadcast trees for multifrontal factorizations
Patrick R. Amestoy, Jean-Yves L’Excellent, Wissam M. Sid-Lakhdar

To solve sparse systems of linear equations, mul-
tifrontal methods [2] rely on partial LU decomposi-
tions of dense matrices called fronts. The dependen-
cies between those decompositions form a tree, which
must be processed from bottom to top in a topolog-
ical order. We consider a parallel asynchronous set-
ting where 1D acyclic pipelined decompositions are
used. At each node Ni of the multifrontal tree, fac-
tored panels have to be broadcast to other processes
involved in Ni. Because of the asynchronous envi-
ronment considered, we use w−ary broadcast trees
aiming at better controlling communication memory
and pipeline efficiency than, for example, a binomial
tree or a standard MPI IBCAST primitive.

In our asynchronous model, memory is needed for
the communication of factored panels. In particular,
a process involved in a broadcast tree will store a
factored panel (e.g., on reception), will relay (or just
send, for the root of the broadcast tree) it to all its
successors in the broadcast tree, and the memory for
the panel will be freed only when all successors have
received the panel sent. When memory for communi-
cations is limited (for a large problem, a typical panel
to be sent might require 200 Mbytes) deadlocks may
appear. In this work, we aim at avoiding deadlocks
while designing efficient communication patterns, us-
ing the available communication memory as much as
possible for performance.

Let us examine a simple case of deadlock. Let 1, 2,
x, y, a and b be processes involved in the computation
of two (fronts) tasks T1 and T2. Fig. 1 (left) shows
broadcast tree branches of T1 and T2, with arrows
representing messages paths. On Fig. 1 (right), an
arrow i→ j indicates that freeing a memory resource
on j (corresponding to a message sent to i) depends
on i performing the associated reception. Depend-
ing on the order of messages, there can be a cycle
(in red) in the dependency graph between resources.
Assuming that each process only has one communi-
cation buffer, if 1 receives a message from x and 2
receives a message from y, when 1 relays its message
to 2, 2 is already full and will not be able to receive
the message from 1. Similarly, 1 will not be able to
receive the message from 2 leading to a deadlock [1].

x

1

2

a

y

2

1

b

T1 T2

x y

1 2

ab

Figure 1: Branches in broadcast trees (left) with a possible
cycle between resources (right).

Assuming that each process has two memory
buffers for communication instead of one, the dead-
lock may still happen if process 1 fills its two buffers
with messages from x (thus not receiving messages
from 2) and 2 receives two messages from y (thus not
receiving messages from 1). The only way to avoid
the deadlock is to receive and relay messages to the
leaves a and b before resources are full of messages
in the cycle shown in Fig. 1 (right). Reserving one
resource for T1 and another one for T2 on both 1 and
2 also prevents the deadlock, although resources may
be wasted if T1 and T2 are not both active together.
A more dynamic approach consists in receiving mes-
sages in natural order as much as possible, and then
avoiding deadlocks by forcing the last available re-
sources to be used for messages that can be relayed
outside the cycles. In this situation, deadlock avoid-
ance could here consist in having 1 and 2 receiving
messages that can be relayed to the leaves a and b.
Property 1 provides a simpler solution, not requiring
any knowledge of distributed (dynamic) cycles [3]:

Property 1. Assume that a global order has been de-
fined between tasks (nodes). If, each time a process Pi

only has one remaining free communication resource
(others being busy), it dedicates this ressource to com-
munications involving the smallest task it is mapped
on, then deadlocks cannot occur.

Coming back to 1D asynchronous factorizations,
the overall approach is sketched in Algorithm 1 and
relies on fairly standard hypothesis for a fully asyn-
chronous context: (H1) Computation and relay op-
erations associated to a message are atomic (line 3
of the algorithm). In particular, a message arriving
too soon is not relayed before local operations can be
done. (H2) At each node of a broadcast tree, if
memory is available, the message is sent to all succes-
sors in the broadcast tree (send to all or to no one).
(H3) If m1 is sent from Pi to Pj before m2, then m1

is received by Pj before m2.
1: while (! global termination) do
2: if (some received messages can be processed) then
3: process them (computations followed by relay in

broadcast trees)
4: else
5: check whether a new local node can start: activation

of new broadcast tree (multiple non-blocking sends)
6: end if
7: end while
Algorithm 1: Asynchronous multifrontal scheme.

Fig. 2 shows an example of partial decomposition of
a dense matrix, that can be interpreted in the multi-
frontal method as a chain of fronts in the multifrontal



tree. At each node of this chain (here with just a
child C and a parent P), one process sends panels to
other processes using broadcast trees (TC for child
process 1 and TP for parent process 2). The fact
that red panels must be computed and treated be-
fore blue ones is naturally represented by a causality
link between TC and TP, formally defined as follows.

Definition 1. Let TC and TP be two broadcast trees.
We define the child-parent causality link between
TC and TP by the relation: ∀Pi ∈ TP, if Pi ∈ TC,
all activities of Pi in TC must be finished before any
activity of Pi in TP can start.

1

2

3

4

5

6

7

8
process
mapping

TC1 TP1

TC1

1

2

4

8

6

3

5 7

TC2

1

8

4

2

6

3

5 7

TP1

2

4

8 6

3

5 7

TP2

2

4

8 6

5

3 7

Figure 2: 1D pipelined factorization and several broadcast
trees: TC for child, TP1 or TP2 for parent. We assume here
that process mapping remains unchanged between C and P so
that the root of TC does not work in TP .

1
2
3
4
5
6
7
8

Using TC1 and TP1

T ime

1
2
3
4
5
6
7
8

Using TC2 and TP2

T ime
Figure 3: Gantt-charts of child (red) and parent (blue or
green) operations; idle periods in gray.

On multifrontal chains or trees it may happen that
local ressources of a process, say Pi, are busy because
of messages arriving too early or that are not effec-
tivly sent (receiver busy). To apply Property 1 and
thus to avoid deadlocks, the last available resource
should then be dedicated to communications related
to the smallest unfinished node involving Pi (smallest
in the sense of a global order compatible with causal-
ity links, that is, any topological order). In this con-
text, the overhead will depend on the communication
patterns and thus on the structure of the broadcast
trees, as will be demonstrated in the following.

Definition 2. Let TC and TP be two broadcast trees.
TP is said to be IB-compatible with TC if, ∀N ∈
TP ∩ TC,∃A ∈ {ancestors of N in TP}, s.t. A ∈
subtree in TC rooted at predTC(N), the predecessor
of N in TC.

Property 2 (No wait). Given a child C and a parent
P such that TP is IB-compatible with TC. If a process
Pi in TP performs a blocking receive on a given mes-
sage in TC to respect causality links, then Pi will not
wait because the expected message has already been
sent.

Definition 3. ABCw trees (Asynchronous Broad-
Cast trees) are defined by the following characteris-
tics, at each level of a multifrontal chain:
(1) IB-compatibility of TP with TC (no wait);
(2) Width w determined by network topology;
(3) Number of nodes in each child subtree of any node

is balanced: difference is at most 1 (this implies
minimal height and balanced communications);

(4) Maximum pipeline efficiency between successive
child and parent trees (e.g., Fig. 3 shows that
TC1/TP1 are much better than TC2/TP2).

In order to build all ABCw trees for the chain,
we start from a tree at the bottom node respecting
(2) and (3). We then apply successive Ascensions
to build parent trees from child trees. An ascension
builds TP from TC by taking the branch in TC whose
nodes are roots of the heaviest child subtrees at each
level, and then making each node in that branch re-
place its parent. An example is given in Fig. 2, where
1 → 2 → 4 → 8 in TC1 is replaced by 2 → 4 → 8 in
TP1. The mapping of the processes at the bottom
node induces the mapping of processes in the ABCw
trees such as to respect the following properties: (i) at
each level, the root of TP is a child of the root of
TC ; and (ii) the order of the roots of the successive
ABCw trees in the chain follows the mapping of pro-
cesses in the initial front (here 12345678). It can then
be proved that by construction ascensions guarantee
(1) and (4) and that, if the initial broadcast tree (at
chain bottom) has properties (2) and (3), they will
propagate on all broadcast trees in the chain.

To conclude, we have proposed in the context of
asynchronous multifrontal methods properties avoid-
ing deadlocks and broadcast trees providing good
performance in the case of chains of nodes with no
remapping between nodes. It can be shown that the
lost process at each node of the chain may be re-
used anywhere in the multifrontal tree with no risk
of deadlock. As an extension to this work, we work
on using ABCw trees to: (i) the case where rows
are remapped between a child and a parent (ii) the
case of general trees. In both cases, the causality
definition can be modified to take into account mes-
sages exchanges between child and parent nodes in
the elimination tree.



References

[1] E. G. Coffman, M. Elphick, and A. Shoshani. Sys-
tem deadlocks. ACM Comput. Surv., 3(2):67–78,
June 1971.

[2] I. S. Duff and J. K. Reid. The multifrontal solu-
tion of unsymmetric sets of linear systems. SIAM
Journal on Scientific and Statistical Computing,
5:633–641, 1984.

[3] A. N. Habermann. Prevention of system dead-
locks. Commun. ACM, 12(7):373–ff., July 1969.

A Appendix

Proof of Property 1. Two necessary conditions for
deadlock are resource starvation and the presence of
cycles. As long as enough buffer memory is available,
no deadlock can occur. Moreover, as no cycle exists
in a broadcast tree, a cycle may only occur between
distinct broadcast trees. Hence, the dependencies in
a cycle are related to two or more tasks. Thus, if the
processes in this cycle respect a global order between
tasks when they have critically low buffer memory,
we guarantee that at least two dependencies in the
cycle cannot coexist simultaneously, as the processes
will first communicate following the first dependency
before starting / continuing the communications in
the other dependency. The cycle is then broken.

Proof of Property 2. Let Pi be a process mapped on
NC ∈ TC and on NP ∈ TP, which has received
a message from predTP(NP ), but has not finished
its work in TC. Respecting causality implies that as
soon as Pi has only a single buffer resource available,
it must post the reception and treat messages msg in
TC (coming from predTC(NC)). The only way to
guarantee that a message msg has already been sent
is to find a path linking this event “Pi has posted the
reception of msg from predTC(NC)” with the event
“predTC(NC) sends msg to NC”. As the reception of
a message of TP from predTP(NP ) by Pi means that
all the ancestor processes of Pi in TP have relayed all
the messages in TC (respect of causality) and as one
of Pi’s ancestors (A) in TP is also mapped in TC in
the subtree rooted at predTC(NC) (IB-compatibility
of TP with TC), this implies that all the processes be-
tween this ancestor and predTC(NC) in TC (in par-
ticular predTC(NC)) have relayed all the messages in
TC (in particular msg). Hence, msg is guaranteed to
have been already sent. More precisely, it has been

sent by predTC(NC) to the sibling of NC subtree
that contains A, and thus – thanks to (H2) – it has
also been sent to NC.

Generalization of Property 2. Property 2 only con-
siders a child and a parent but can be generalized to a
chain of nodes where each child tree is IB-compatible
with the corresponding parent tree: if Pi must receive
a message corresponding to the smallest (lowest) ac-
tive front Pi is mapped on, then it can be proven
that the message has already been sent. The basic
idea of the proof is that, if a path linking events be-
tween two succesive fronts exists, it also exists in a
chain of successive fronts. This generalization is ac-
tually necessary to obtain the “No wait” property of
ABCw trees not only between child and parent but
also between grandchild and grandparent, . . .


	Appendix

