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1 Kelner et al.’s Randomized Kaczmarz Solver

Solving linear systems on the graph Laplacian of large
unstructured networks has emerged as an important
computational task in network analysis [7]. Most work
on these solvers has been on preconditioned conjugate
gradient (PCG) solvers or specialized multigrid methods
[6]. Spielman and Teng, showed how to solve these
problems in nearly-linear time [8], later improved by
Koutis et al. [5] but these algorithms do not have
practical implementations. A promising new approach
for solving these systems proposed by Kelner et al. [4]
involves solving a problem that is dual to the original
system.

The inspiration for the algorithm is to treat graphs
as electrical networks with resistors on the edges. The
graph Laplacian is defined as L = D � A where D is
a diagonal matrix containing the sum of incident edge
weights and A is the adjacency matrix. For each edge,
the weight is the inverse of the resistance. We can
think of vertices as having an electrical potential and
net current at every vertex, and define vectors of these
potentials and currents as ~v and ~� respectively. These
vectors are related by the linear system L~v = ~�. Solving
this system is equivalent to finding the set of voltages
that satisfy the currents. Kelner et al.’s SimpleSolver
algorithm solves this problem with an optimization
algorithm in the dual space which finds the optimal
currents on all of the edges subject to the constraint of
zero net voltage around all cycles. They use Kaczmarz
projections [3] [9] to adjust currents on one cycle at
a time, iterating until convergence. They prove that
randomly selecting fundamental cycles from a particular
type of spanning tree called a “low-stretch” tree yields
convergence with nearly-linear total work.
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Figure 1: Grid Cycles

2 Choosing the Cycle Basis

We examine di↵erent ways to choose the set of cycles
and their sequence of updates with the goal of providing
more flexibility and potential parallelism. Our ideas
include the following.

• Provide parallelism by projecting against multiple
edge-disjoint cycles concurrently.

• Provide flexibility by using a non-fundamental cy-
cle basis.

• Provide flexibility by using more (perhaps many
more) cycles than just a basis.

• Accelerate convergence by varying the mixture of
short and long cycles in the updating schedule.

Sampling fundamental cycles from a tree will require
updating several potentially long cycles which will not
be edge-disjoint. It would be preferable to update
edge-disjoint cycles as these updates could be done
in parallel. Instead of selecting a cycle basis from a



spanning tree, we will use several small, edge-disjoint
cycles. We expect updating long cycles will be needed
for convergence, but we consider mixing in the update of
several short cycles as they are cheap to update and have
more exploitable parallelism. These cycles can then be
added together to form larger cycles to project against
in a multigrid like approach.

An example of these cycles can be seen on the 5 by
5 grid graph in Figure 1. Figure 1(a) shows a spanning
tree in which each cycle is determined by an edge not
in the tree. The smallest cycles of a non-fundamental
scheme are shown in Figures 1(b)(c). All the cycles in
each of these two figures are edge-disjoint and can be
updated in parallel. They can also be summed together
as in Figure 1(d).

3 Preliminary Experiments and Results

We performed our initial experiments on grid graphs of
various sizes. We used a non-fundamental set of cycles
with a hierarchical ordering. The smallest set of cycles
are updated. Then the cycles are coarsened and the
next level of cycles are updated. This is done until
reaching the perimeter cycle before resetting back to
updating the smallest cycles. We also implemened the
SimpleSolver algorithm in Matlab, except that we used
a random spanning tree for sampling instead of a low-
stretch tree. We also haven’t implemented a clever data
structure Kelner et al. use to quckly update edges. We
also compared our results to PCG with Jacobi.

The metric we choose for comparison is the total
number of edges updated, or matrix elements touched
in CG. We can see the total work measured in edges
updated in Table 1. Also shown in the table is an
estimated potential parallelism using the work-span
model [10]. The span, or critical path length, is the
maximum number of edges that would have to be
updated by a single processor if we can split the work
over infinitly many processors.

Grid Size (Vertices) 25 289 4,225
Fundamental Cycles Work 8K 1.4M 296M
Alternative Cycles Work 1K .08M 4M
Alternative Cycles Span .5K 8.4K 105.8K

PCG Work 1K .09M 5M

Table 1: Edges Updated

4 Conclusions and Future Work

Our preliminary experiments show that choosing a non-
fundamental set of cycles can save significant work com-
pared to a fundamental cycle basis, and can be at least
competitive with PCG.

We are exploring ways to find a non-fundamental
cycle basis of more general graphs; one challenge is how
best to find large sets of short edge-disjoint cycles for
parallelism. Our ideas for cycle finding include short-
cuts to the spanning tree cycles and growing small cy-
cles locally around vertices and edges. We also plan to
make a rigorous comparison with several other precon-
ditioned CG methods, including incomplete Cholesky
and support-graph techniques.

We note that any of these graph Laplacian solvers
can be extended to general symmetric diagonally domi-
nant systems via standard reduction techniques. [1] [2].
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