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Introduction. Gower and Mello [3] recently introduced a graph model for computing Hessians using
Automatic Differentiation (AD) [1, 2]. In the model, which is based solely on Reverse Mode AD, the compu-
tational graph of the input function is augmented with minimal information—additional edges correspond-
ing precisely with nonlinear interactions—and the symmetry available in Hessian computation is exploited.
Using the model, they developed an algorithm, called Edge Pushing, where edges representing nonlinear
interactions are ‘created’ and their contributions to descendants are ‘pushed’ as the algorithm proceeds. The
approach represents an important progress in AD for Hessians, but it unfortunately has several shortcomings.
First, the authors’ derivation of the algorithm is rather complicated and hard to understand. Second, their
implementation in ADOL-C relies on an indexing assumption not necessarily supported by ADOL-C so that
their code gives incorrect results in some cases. In this work, we provide a new, intuitive derivation of the
Edge_Pushing algorithm from a completely different perspective and a robust implementation (built on top
of ADOL-C) that works correctly in all cases. At the heart of our approach lies this: we identify an invariant
in the first order incremental reverse mode of AD, which we arrive at by taking a data-flow perspective.
We obtain the Hessian algorithm by extending the invariant to second order. Additionally, we incorporate
preaccumulation in the Hessian algorithm to further enhance performance.

Reverse Mode AD. In data-flow analysis in compiler theory, a variable is said to be live if it holds a
value that might be read in the future. We find a similar notion useful in our context. Since in reverse mode
AD all information about the execution sequence of the objective function is recorded on an evaluation trace,
we can in fact work with a more restricted definition for a live variable. In particular, we say a variable is
live if it holds a value that will be read in the future. And we call the set made up of all live variables at
each step of the execution sequence a live variable set in that sequence.

Following the notations of Griewank and Walther [1], the first order incremental reverse mode of AD can
be written using a sequence of Single Assignment Code (SAC) as:

Algorithm: First Order Incremental Reverse Mode (FOIRM)

Initialization: v, =1.0,v,_, = =0g=0; =---=0;_1 =0
for i=1,---,1do
for all v; < v; do (=< denotes precedence)

Dt = 90ig.
v+ = v, Vi

We observe the following invariant in this mode of computing adjoints:

Observation 1 The set of adjoints computed in each step i of the FOIRM algorithm involve partial deriva-
tives with respect to only the current live variable set, not the entire set of variables.

Hessian Algorithm. We extend the invariant formulated in Observation 1 to second order derivatives.
Let S denote the set of live variables in a given step. Then, the first order derivatives (adjoints), denoted in
the code in FOIRM by 7, for each v € S, can be viewed as a mapping a : S — R, a(v) = 9. Analogously, the
second order derivatives (Hessian) can be viewed as a symmetric mapping h: S x S = R, h(v,u) = h(u,v).
Our target algorithm is then precisely a prescription of how S, a(S) and h(S,S) should be changed as the
associated SAC is processed such that the invariant is maintained.

Let S, a(S) and h(S,S) denote the live variable set, the adjoint mapping, and the Hessian mapping,
respectively, after a SAC v; = ;(v;)y, <, is processed. Because the sequence proceeds in the reverse order,
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we have S = {S\ {v;}} U {vj|v; < v;}. Considering the adjoints equation, and noting that gl = 0 when

v;
v; A v;, and a(v;) =0 when v; ¢ S:
dal
(%j
For the second order rule, noting that h(vj,vx) = 0 when v; ¢ S or v, ¢ S, and applying the chain rule of
calculus, analogous to the adjoint case, we have Vv;,v;, € S:

Yo; € 8, a(v;) = alv;) + a(v;).

Op; Op;

Op; Op;
h(vj,vg) = h(vj, vk) + —af h(vi, v) + —8;1 h(vi, ;) + Dv; Do h(vi, v;)
j j
P
+ a(vi)avjavk' (1)

Equation (1) corresponds to the Edge_Pushing algorithm of [3], in which the last three terms on the
first line represent the pushing part, and the sole term in the second line represents the creating part in the
component-wise form of their algorithm.

Implementation and Evaluation. We implemented this data flow-based Hessian algorithm in ADOL-C.
We observe that in order to take advantage of the symmetry available in Hessian computation, the result
variables in the SAC sequence need to have monotonic indices. However, the location scheme for variables
currently used in ADOL-C does not satisfy this property, which is one reason why the Gower-Mello imple-
mentation of the Edge Pushing algorithm fails. We implemented a fix in ADOL-C where we appropriately
translate indices of variables before starting the reverse Hessian algorithm.

To further improve efficiency, we incorporate a statement-level preaccumulation technique to the Hessian
algorithm. Preaccumulation splits the reverse Hessian algorithm into a local and a global level. In the local
level, each SAC is processed to compute the first and second order derivatives of local functions defined
by assign-statements in the execution path. In the global level, the derivatives of each local function is

accumulated to compute the entire Hessian of the objective function.

The table below shows sample results comparing the runtime (sec.) of the new approach (EPwithPreacc
and EPwithoutPreacc) with two related approaches: (i) a full Hessian algorithm in which sparsity is
not exploited (Full-Hessian) and (ii) two compression-based sparse Hessian algorithms involving spar-
sity structure detection, graph coloring, compressed evaluation and recovery (SparseHess-direct and
SparseHess-indirect). Results are shown for synthetic test functions from [5] and mesh optimization
problems in the FeasNewt benchmark [4]. Details will be discussed in the upcoming full report.

Synthetic Mesh Optimization
Matrix order n: 10,000 10,000 10,000 10,000 2,598 11,597 39,579
Number of nonzeros: 19,999 59,985 44,997 59,985 | 46,488 253,029 828,129
Full-Hessian 31.78 573.16 28.91 33.83 129.36 > 2 hours > 2 hours
SparseHess—direcﬂL 0.04 0.30 0.12 16.05 5.17 37.35 129.35
SparseHess-indirect’ 0.20 0.31 0.33 25.72 4.14 28.94 111.97
EPwithoutPreacc 0.05 0.27 0.12 0.12 0.53 3.63 12.80
EPwithPreacc 0.06 0.23 0.08 0.10 0.48 3.27 11.10

1 The times are a total of the four steps, whose contributions vary greatly. As an example, the breakdown for the largest mesh
‘ Pattern Coloring Compressed H. Recovery
optimization problem (nnz=828,129) is: SparseHess-direct 54.1% 1.02% 44.8% 0.03%
SparseHess-indirec | 61.1% 0.96% 24.8% 13.1%
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