
Hierarchical seeding for e�cient sparsity pattern recovery in

automatic di↵erentiation

Joris Gillis

⇤1
and Moritz Diehl

2

1
KU Leuven, Electrical Engineering Department (ESAT-STADIUS), Kasteelpark

Arenberg 10, 3001 Leuven, Belgium

2
Freiburg Univ, Department of Microsystems Engineering (IMTEK), G.-Koehler-Allee

102, 79110 Freiburg, Germany

Obtaining the Jacobian J = @f

@x

of a vector valued function f(x) : Rn ! Rm is central to applications
such as gradient-based constrained optimization and sensitivity analysis. When the function is not a
black box, but instead an interpretable algorithm with run-time T , automatic di↵erentiation o↵ers a
mechanistic way to derive two algorithms from the original f(x) that accurately evaluate the following
sensitivities:

Forward sensitivity ADfwd
f

(x, sfwd) = J(x)sfwd, sfwd 2 Rn

Adjoint/reverse sensitivity ADadj
f

(x, sadj) = JT (x)sadj, sadj 2 Rm,

with the run-time of either of the algorithms AD
f

a small multiple of T .
A straightforward approach to recover all Jacobian entries is to seed with columns of an identity matrix.
In this way, the forward and reverse sensitivities correspond directly to respectively columns and rows
of the sought-after Jacobian. For m ⌧ n, the obvious choice is to use m adjoint sensitivities, while in
the n⌧ m case, using n is cheapest. With this strategy, the cost for a total Jacobian is in the order of
min(n,m)T .

If one knows the sparsity of J beforehand, the number of required sensitivities can potentially be drasti-
cally reduced. For example, when n = m and J is known to be diagonal, a single sensitivity evaluation
with seed [1, 1, . . .]T su�ces. More generally, a coloring of the column intersection graph of the sparsity
pattern of J provides a small set of seeds usable to obtain the full Jacobian. We denote such coloring as
col(J) and use an existing distance-2 unidirectional algorithm[2].
The potentially dramatic speed-up requires first the sparsity pattern to be obtained. We will assume
for the remainder of this work that we can derive the following bitvector-valued dependency functions[3]
from the original algorithm f :

Forward dependency depfwd
f

(dfwd) 2 Bm, dfwd 2 Bn

Adjoint/reverse dependency depadj
f

(dadj) 2 Bn, dadj 2 Bm,

with B the Boolean set {0, 1}. A zero in the dependency function output means that any seed s with
sparsity as in the input d, when supplied to the corresponding sensitivity function, would result in a zero
sensitivity output in that same location.
A straightforward technique to recover the full sparsity pattern is to seed the dependency functions
with slices of a unit matrix. The run-time ⌧ of the dependency functions is typically orders of magni-
tude smaller than T . However, for large sparse matrices, the sparsity calculation run-time ⌧min(n,m)
could dominate the calculation of the Jacobian. In this work, we propose a hierarchical bitvector-based
technique to recover the sparsity pattern faster for highly sparse cases, as would be the case in e.g.
multiple-shooting based optimal control problem transcriptions.

⇤joris.gillis@esat.kuleuven.be; Joris Gillis is a Doctoral Fellow of the Fund for Scientific Research – Flanders (F.W.O.)
in Belgium.

The coloring of a sparse Jacobian allows to recover more information from a single sensitivity sweep. A
crucial observation is that it can do exactly the same for dependency sweeps. The proposed algorithm
starts with obtaining the sparsity pattern in a coarse resolution, performing a coloring of this coarse
resolution, and hence potentially reducing the number of fine-grained dependency sweeps needed to
obtain a fine-grained image of the sparsity. The algorithm performs this refinement in a recursive way
until the full sparsity is recovered:

Input : � 2 N,� > 1 subdivision factor
Input : Dimensions n and m of Jacobian
Init : (N,M) (n,m); r [1]; /* Initialize with a scalar */

while N > 1 and M > 1 do
fwd col(r); adj col(rT) ; /* Coloring of the coarse pattern */

if adj is cheaper then seed adj ; (N,M,n,m, r) (M,N,m, n, rT); mode ’adj’;
else seed fwd; mode ’fwd’;
(⌫, µ) dimensions of r; (N,M) (dN/�e, dM/�e);
S block matrix with ⌫-by-µ empty cells of shape n/(N⌫)-by-m/(Mµ);
foreach s 2 seed do

d block dep
�
mode; s⌦ 1m/(Mµ) ⌦ vM

�
; /* Block sparsity seeding */

d max
�
(1n/N ⌦ hN)d, 1

�
; /* Block sparsity aggregate */

foreach j in nonzero locations of s do
foreach i in nonzero locations of column j of r do

S
i,j

 rows ni/(N⌫) to n(i+ 1)/(N⌫) of d; /* Store result */

end

end

end

if mode = ’adj’ then S ST ; (N,M,n,m) (M,N,m, n);
r S;

end
Output: Jacobian sparsity r,

with ⌦ the Kronecker product, 1n a unit matrix of dimension n, vn a column vector of dimension n
with all entries 1, and hn its transpose. block dep splits up its bitmatrix argument into columns, feeds
these to depfwd

f

or depadj
f

depending on the mode, and lumps the results back together to form a new
bitmatrix. For ease of presentation, the above algorithm is restricted for n and m integer powers of �.
The extension for general dimensions, together with a variant for star-coloring for symmetric Jacobians,
was implemented in the CasADi framework[1]. In that framework, 64 dependency sweeps are evaluated
concurrently and hence a subdivision factor of � = 64 was chosen.

The asymptotic run-time is a factor �/(�� 1) worse than the straightforward approach for a fully dense
Jacobian (i.e. worst-case). However, for a block-diagonal n-by-n matrix with a blocksize �, the run-time
is ⌧� log

�

(n), amounting to a change in complexity from O(n) to O(log(n)).
The following table lists run-time results for block-diagonal matrices with blocksize 4-by-4 and shows a
clear benefit for the proposed algorithm in practice:

⌧ Run-time, straightforward approach Run-time, proposed algorithm
n = 256 0.11ms 0.6ms (6⌧) 0.9ms (8⌧)
n = 16384 328ms 84.0s (256⌧) 1.02s (3⌧).

[1] Andersson, J., Åkesson, J., and Diehl, M. CasADi – A symbolic package for automatic
di↵erentiation and optimal control. In Recent Advances in Algorithmic Di↵erentiation (Berlin, 2012),
S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, Eds., Lecture Notes in Computational
Science and Engineering, Springer.

[2] Gebremedhin, A. H., Manne, F., and Pothen, A. What color is your Jacobian? Graph coloring
for computing derivatives. SIAM Review 47 (2005), 629–705.

[3] Giering, R., and Kaminski, T. Automatic sparsity detection implemented as a source-to-source
transformation. In Lecture Notes in Computer Science, vol. 3994. Springer Berlin Heidelberg, 2006,
pp. 591–598.

