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Nested dissection with balanced halo

Astrid Casadei1,3, Pierre Ramet1,3, and Jean Roman1,2

1INRIA Bordeaux Sud-Ouest & CNRS (LaBRI UMR 5800)
2Bordeaux Institute of Technology (IPB)

3Bordeaux University

Nested Dissection (ND) has been introduced by A. George in 1973 [2] and is a well-known and very
popular heuristic for sparse matrix ordering to reduce both fill-in and operation count during Cholesky fac-
torization. This method is based on graph partitioning and the basic idea is to build a ”small separator C”
associated with the original matrix in order to split the remaining vertices in two parts A and B of ”almost
equal sizes”. The vertices of the separator C are ordered with the largest indices, and then, the same method
is applied recursively on the two subgraphs induced by A and B. Good separators can be built for classes
of graphs occurring in finite element problems based on meshes which are special cases of bounded density
graphs or more generally of overlap graphs. In d-dimension, such n-node graphs have separators whose size
grows as O(n(d�1)/d). In this presentation, we focus on the cases d = 2 and d = 3 which correspond to the
most interesting practical cases for numerical scientific applications. ND has been implemented by graph
partitioners such as MeTiS or Scotch[6].

Moreover, ND is based on a divide and conquer approach and is also very well suited to maximize the
number of independent computation tasks for parallel implementations of direct solvers. Then, by using the
block data structure induced by the partition of separators in the original graph, very e�cient parallel block
solvers have been designed and implemented according to supernodal or multifrontal approaches. To name
a few, one can cite MUMPS, PaStiX and SuperLU. However, if we examine precisely the complexity
analysis for the estimation of asymptotic bounds for fill-in or operation count when using ND ordering[5],
we can notice that the size of the halo of the separated subgraphs (set of external vertices adjacent to the
subgraphs and previously ordered) play a crucial role in the asymptotic behavior achieved. The minimization
of the halo is in fact never considered in the context of standard graph partitioning and therefore in sparse
direct factorization studies.

In this presentation, we will focus on hybrid solvers combining direct and iterative methods and based on
domain decomposition and Schur complement approaches. The goal is to provide robustness similar to sparse
direct solvers, but memory usage more similar to preconditioned iterative solvers. Several sparse solvers like
HIPS, MaPHyS, PDSLIN and ShyLU implement di↵erent versions of this hybridification principle.

In this context, the computational cost associated to each subdomain for which a sparse direct elimi-
nation based on ND ordering is carried out, as well as the computational cost of the iterative part of the
hybrid solver, critically depend on the halo size of the subdomains. However, to our knowledge, there does
not exist a domain decomposition tool leading to a good balancing of both the internal node set size and the
halo node size. Standard partitioning techniques, even by using k-way partitioning approach, which intends
to construct directly a domain decomposition of a graph in k sets of independent vertices[4], do not lead in
general to good results for the two coupled criteria, and for general irregular graphs coming from real-life
scientific applications.



For this purpose, we revisit the original algorithm introduced by Lipton, Rose and Tarjan [5] in 1979
which performed the recursion for nested dissection in a di↵erent manner: at each level, we apply recursively
the method to the subgraphs induced by A[C on one hand, and B[C on the other hand. In these subgraphs,
vertices already ordered (and belonging to previous separators) are the halo vertices. The partition of these
subgraphs will be performed with three objectives: balancing of the two new parts A0 and B0, balancing of
the halo vertices in these parts A0 and B0 and minimizing the size of the separator C 0.

We implement this strategy in the Scotch partitioner. Scotch strategy is based on the multilevel
method[3] which consists in three main steps: the (sub)graph is coarsened multiple times until it becomes
small enough, then an algorithm called greedy graph growing is applied on the coarsest graph to find a good
separator, and finally the graph is uncoarsened, projecting at each level the coarse separator on a finer graph
and refining it using the Fiduccia-Mattheyses algorithm[1].

We have adapted the multilevel framework of Scotch in order to take into account the halo vertices from
orginal to coarsest graph. Moreover, we have worked on two variants of greedy graph growing. The first one
is called double greedy graph growing (DG). Its principle is to pick two seed vertices as far as possible among
the halo, and to make parts A and B grow from them, with attention paid to keep halo balanced among
the growing parts. The second approach, called halo-first greedy graph growing (HF), works in a first stage
on the sole halo graph, finding a separator of it. Once it is done, it defines the two halo parts Ah and Bh

as two sets of seeds and make these sets grow in the whole graph to build A and B. Finally, we have also
changed the Fiduccia-Mattheyses refinement algorithm (FM) in order to preserve the good balancing in the
finer graphs. Our algorithms will be explained more deeply during the presentation.

We made tests on a pool of 30 graphs from 140,000 to over 10 millions vertices. We measured both halo
and domain interior imbalance. On 16 domains, our algorithms achieve an average gain of 39% on the halo
imbalance, while not degrading interior imbalance. We increased the number of domains up to 512 on our
biggest graphs and still got very good gains, in particular with HF. More detailed results will be given in
the presentation.
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