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Hervé Deleau⇤, Christophe Jaillet⇤, Michaël Krajecki⇤, Julien Loiseau⇤,
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I. THE LANGFORD PROBLEM

The Langford problem is a classic permutation prob-
lem [1], [2]. While observing his son manipulating
blocks of different colors, Langford noticed that it was
possible to arrange three pairs of blocks of different
colors (e.g., yellow, red, blue) in such a way that color
1 cubes were separated by 1 block, color 2 by 2 blocks,
etc. (Fig. 1).
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Figure 1. L(2,3): arrangement for 6 blocks of 3 colors.

The nth instance of the Langford problem consists in
counting the number L(2, n) of such pairs arrangements
(up to a symmetry). This study considers the standard
Langford problem but could be generalized to any num-
ber s of blocks having the same color, in order to get
the L(s, n) value. Martin Gardner presented instance 4
of the problem (2 cubes and 4 colors) as being part of a
collection of small mathematical games and stated that
L(2, n) has solutions for all n such that n = 4k or
n = 4k � 1 for k 2 N \ {0}.

A. Miller’s algorithm: a tree search approach

The Langford problem can be modeled as a tree search
problem where look for all possible solutions. In order
to solve L(2, n), we consider a tree of height n where:

• every node of the tree corresponds to the place in
the sequence of the cubes of a determined color;

• at the depth p, the first node corresponds to the
place of the first cube of color p in first position,
and the ith node corresponds to the positioning of
the first cube of color p in position i, where i 2
[1, 2n� 1� p];

• every leaf of the tree symbolizes the positions of all
the cubes;

• a leaf is a solution if it respects the color constraint
defined by the Langford problem: all the cubes must
be in different places.

This search tree is usually implemented in a bottom-up
approach (Fig. 2), where the top color is the nth color, as
this approach allows tree pruning to remove symmetric
results and unsolvable branches.
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Figure 2. Search tree for L(2, 3) with symmetry pruning.

B. Godfrey’s algorithm: algebraic method

The Miller’s approach, limited to this naive tree search
evaluation with backtracking, suffers from combinatorial
explosion. It allowed to get L(2, 19) in 1999 after 2.5
years on a DEC alpha computer, but the compute time
is estimated to be 10 times higher from an instance to
the following one.

In 2002, an algebraic representation of the Langford
problem has been proposed by Godfrey1.
Consider L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It
proposes to model instance 3 by F (X, 3) = (X1X3 +
X2X4 +X3X5 +X4X6)⇥ (X1X4 +X2X5 +X3X6)⇥
(X1X5+X2X6). In this approach, each term represents
a position for both cubes of a given color ; the number of
solutions is equal to the coefficient of X1X2X3X4X5X6

in the polynomial development. More generally, the
number of solutions of instance n corresponds to the
coefficient of X1X2X3X4X5...X2n in F (X,n).

1http://legacy.lclark.edu/⇠miller/langford/godfrey/method.html



If G(X,n) = X1...X2nF (X,n) then Godfrey has
shown that:

X
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The computation of L(2, n) is in O(4n ⇥ n2) and an
efficient long integer arithmetic is needed.

By using this approach, M. Godfrey has solved
L(2, 20) in one week on three PCs in 2002. Later,
Krajecki et al. [3] solved the L(2, 23) and the L(2, 24)
problem instances, the latter in 3 months, using a dozen
of computers. In spite of the evolution of CPUs process-
ing power, the solution for the next problem instance
- L(2, 27) - would require several months of intensive
computing on a whole cluster.

II. LANGFORD DEPLOYMENT ON MULTIGPU
CLUSTERS

Since the end of 2000’s, GPUs become a fast and
less expensive alternative to massive parallel comput-
ing on CPUs. The number of GPU cores that can be
aligned in a single machine is much more expressive (for
example, 2688 GPU cores in a Nvidia K20Xm Kepler
GPU processor, against 16 cores in a Intel Xeon CPU).
Nowadays supercalculators include GPUs, and multi-
GPU architectures become more frequent in the TOP500
list.

One of the main limitations of GPUs is that their
cores are simpler that CPU ones and the threads spread
on these cores work synchronously. This prevents to take
advantage of their potential on irregular applications,
based on multiple tests and branchings.

Our approach uses a bottom-up tree (i.e., starting
from the nth color) and combines Miller and Godfrey’s
techniques to efficiently perform the computation.

The Miller’s tree search allows to prune the search
space in order to highly reduce the search effort, but
it is based on backtracking and thus cannot benefit of
GPUs use. This step is therefore performed on CPU.

Our Miller’s implementation is based on a binary
representation of the ”color” codes (for example, a color
in level 1 has code ”101”, while a color in level 3
has code ”10001”) with bit-shifting and bit-wise XOR
operations (Fig. 3).

Using a distributed computing middleware such as
MPI or CloudFIT [4], the generated consistent masks
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Figure 3. Bitmap evaluation of color alignments.

are treated by compute CPU-GPU clients as follows:
the CPU prepares a large set of more refined masks in
order to prepare grids and blocks to feed the GPU, which
traverses the relative sub-tree with the regular Godfrey
approach.

In order to take advantage of the GPUs compute
efficiency, much effort has to be made to optimize
the Godfrey implementation. In addition, code tuning
imposes to fix the depth of the sub-trees to be considered
by the GPU kernels; the depth dedicated to the clients
grids generation is deduced from the server [Miller]
masks generation and the GPU kernel [Godfrey] depth.

We have already developed the implementation of
the Miller tasks generation, their distribution over the
compute clients with client-server or cloud distribution,
the generation of the sub-masks sets for GPU kernel
computation, and a Miller regularized implementation of
the kernel. The results prove our concept. The last effort
to be done is to implement the GPU kernel version of
the Godfrey approach, which we currently work on. We
aim at the resolution of L(2,27) on the ROMEO cluster2,
a GPU-enhanced cluster ranked 151th on the TOP500
listing (Nov. 2013).
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