
Linear Programming for Mesh Partitioning under

Memory Constraint : Theoretical Formulations and

Experimentations

Sébastien Morais

1,2
, Eric Angel

1
, Cédric Chevalier

2
, Franck Ledoux

2
,

and Damien Regnault

1

1
IBISC Laboratory, University of Evry Val d’Essonne, France

2
CEA, DAM, DIF, F91297 Arpajon, France

In many scientific areas, the size and complexity of numerical simulations lead
to make intensive use of massively parallel simulations on High Performance Com-
puting (HPC) architectures. Such architectures are mainly modelized as a set of
processing units (PU) where memory is distributed. Distribution of simulation data
is crucial: it has to minimize the computation time of the simulation while ensuring
that the data allocated to every PU can be locally stored in memory.

In this work, we focus on numerical simulations using finite elements or finite
volumes methods, where physical and numerical data are carried on a mesh. The
computations are then performed at the cell level (for example triangle and quadri-
lateral in 2D, tetrahedron and hexahedron in 3D). More specifically, computing and
memory cost can be associated to each cell. Depending on the numerical scheme
to apply, a graph or an hypergraph representation of the mesh is built to perform
partitioning. Such a representation is then used by tools like Metis, Patoh, Scotch
or Zoltan to distribute the mesh. Traditional approaches consist in balancing the
computing load between PUs while minimizing:

• either the edge cut, or hyper-edge cut, between parts ;

• or the size of a vertex separator.

Such objective functions do not rely on an important characteristic of the nu-
merical methods used in simulation codes. The computation performed on cell i
requires data from adjacent cells. As a consequence, an usual approach is to du-
plicate some cells between PUs. Such cells are commonly called “ghost cells” and
we obtain a partitioning with covering. Although it is assumed that edge cuts is
proportional to the total communication volume, it is not [Hen98]. And, for iden-
tical reason the memory footprint of ghost cells is not explicitly taken into account
while minimizing edge cuts.

Load balancing is usually achieved in two steps:

1. Cells are distributed according to a balance criterion, without taking care of
ghost cells, to be reached;



2. Then ghost layers are built to allow the resolution of numerical scheme locally
to every PU.

However, the partitioning obtained after phase (1) does not take into account the
memory footprint of ghost cells added in phase (2). For 2D meshes the size of
the edge cut between two parts grows as O(n

1
2 ) and for 3D meshes it grows as

O(n
2
3 ), with n the number of cells. Then, distributing a mesh on a large number of

processors can bring the simulation to break o↵ due to a lack of physical memory
on a PU.

In this context, we propose a new approach for the mesh partitioning on k parts,
which takes into account ghost cells and the memory constraint on each PU. We
formalize this new problem by means of integer linear programming [Dan63]. In
this way, we obtain a problem similar to make span minimization in scheduling
[CPW98], where the variables are: x

i,p

which is equal to 1 if the computations
associated to the cell i are performed on part p and 0 otherwise; y

i,p

which is equal
to 1 if the cell i is stored in memory on part p and 0 otherwise. The problem is:

Function: make span min C
max

Constraints: Assignment
kP

p=1
x

i,p

= 1 8i 2 Mesh

Time
P

i2Mesh
x

i,p

c
i,p

 C
max

8p 2 [[1, k]]

Memory
P

i2Mesh
y

i,p

!
i,p

 Mem
p

8p 2 [[1, k]]

Ghost x
i,p

 y
i

0
,p

8(i, i0) adjacent
and 8p 2 [[1, k]]

This model optimizes the computation time and obtains the resulting partition,
through the variables x

i,p

, while ensuring that the memory size including ghost
cells does not exceed the memory bounds of each processor, through the auxiliary
variables y

i,p

.

To compare our approach with existing solutions, we also modelize some clas-
sical combinatorial problems such as graph partitioning, hypergraph partitioning,
and graph partitioning with vertex separator by using integer linear programming.
Having these various problems in the same formalism supplies first elements of
comparison that we complete by comparing their solutions on benchmarks.

References

[CPW98] B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling
: Complexity, algorithms and approximability. Handbook of Combinato-
rial Optimization, 1998.

[Dan63] George.B. Dantzig. Linear Programming and Extensions, 1963.

[Hen98] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor
no clothes? Lecture Notes in Computer Science, 1998.


