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1 Introduction
Combinatorial Scientific Computing is an important interdisciplinary field combining issues from Combinatorial
Optimization to solve efficiently Scientific Computing problems. In this work, we solve a 3D nonlinear problem
using a Newton-type method that requires, at each step, the evaluation of a Jacobian matrix and the solving of a linear
system. The Jacobian evaluation is optimized through matrix partitioning and a matrix reordering scheme is used to
accelerate the convergence of the preconditioned iterative GMRES solver, as shown in Figure 1.
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Figure 1: Problem flow and optimizations (in blue) scheme.

2 Inexact Newton Krylov Method
The Newton-type algorithm requires the solution of linear systems at each iteration. When iterative Krylov methods
are used to solve these linearized systems, the resulting methods are known as Inexact Newton-Krylov methods.
Inexact Newton methods are especially well suited for large-scale problems and have been used very successfully in
many applications. Their success depends mainly on three factors: (i) quality of initial Newton step, (ii) robustness
of Jacobian evaluation and (iii) robustness of the Krylov iterative method, the last two which we focus on.
3 Optimizations
Sparsity in the derivative matrices can be exploited to compute the nonzero entries efficiently. In finite difference
approximations, efficiency can be achieved by partitioning the columns of a sparse Jacobian matrix into a few groups
of structurally orthogonal ones. In each group, no two columns have a nonzero in a common row and all nonzeros
can be estimated through one finite difference operation, improving the whole evaluation time of the matrix. This
partitioning problem is generally modeled and solved as a graph coloring problem [1], but a different approach is used
for the matrices treated here. Since they have a trivial sparsity pattern, we drew inspiration from [2] to obtain a set
expression, presented in the next section, that defines a minimum partitioning.
Sparse matrix reordering schemes with the purpose of minimizing the bandwidth were also implemented in this work,
as alternatives to speed up the convergence of the preconditioned GMRES method. The preconditioning technique
used is based on incomplete LU factorization ILU(p), where p is the level of fill used to control the number of
new elements generated during the process. The preconditioning calculations are optimized when we use a matrix
reordering, once with the reduced bandwidth less floating-point operations are made. For the tests we adopted the
Sloan reordering [3] for its good solutions achieved for the matrices generated in our specific problem.
4 Test Problem
For the numerical experiments we use a 3D heat transfer problem defined by the nonlinear differential equation:

�r · (K(u)ru) = 0 in ⌦ = (0, 1)⇥ (0, 1)⇥ (0, 1) (1)

where u is the temperature, the thermal conductivity is considered as K(u) = 0.0000002u2 + 0.00001u+ 0.001 and
the boundary conditions are u(x, y, 0) = u(x, 0, z) = u(1, y, z) = 10 and u(x, y, 1) = u(x, 1, z) = u(0, y, z) = 100.
Consider a discretization of ⌦ into an uniform grid with N = n ⇥ m ⇥ l unknowns points, respectively, in the
x, y, z directions. We approximate the derivatives by combining forward, backward and centered finite differences,
arriving to the nonlinear system of equations F (u) = 0, where F : IRN ! IRN is a nonlinear vector function,
u = (u1, u2, . . . , uN )T is the unknown vector and each component of F depends only on the seven unknowns uI�m·n,
uI�n, uI�1, uI , uI+1, uI+n and uI+m·n, for I = 1, 2, . . . , N . Each iteration of the Newton’s method is given by
uk+1 = uk+sk, where sk is calculated by the solution of the linear system J(uk)sk = �F (uk). The Jacobian matrix



J represents the variation of F with respect of u, that is considered as a forward finite difference approximation. We
may terminate the iteration when the relative nonlinear residual kF (uk)k/kF (u0)k is small. Given its heptadiagonal
structure, J can be partitioned into seven groups of structurally orthogonal columns, determined by Gp = {i+ n(j �
1) +m · n(k � 1) | 1  i  n, 1  j  m, 1  k  l, (i+ 3j + 2k) mod 7 = p}, for p = 0, . . . , 6.
5 Experimental Results
For the described problem, we developed programs in the C language. All computational tests were run on an Intel
Core i5-3570 3.40GHz ⇥4 machine with 4GB of RAM under Ubuntu 12.04. To store the sparse matrices derived from
the problem we use an optimized storage scheme called Compressed Sparse Row (CSR). Eight problem instances were
considered and Table 1 shows, for each instance, its dimension N , the p parameter to the ILU(p) preconditioner and
the CPU time, in seconds, for computing the solution in four cases: with no optimization (TNO), using only the matrix
partitioning (TMP ) and the matrix reordering (TMR) techniques and finally with both optimizations (TOP ). The values
in parentheses on columns TMP , TMR, TOP indicate the percentage time reduction (red%) from time TNO. For all
instances, the optimized Jacobian evaluation performed only seven finite difference operations, as opposed to N in
the regular computation. Figure 2 shows the approximate solution obtained for a mesh with 100.000 unknowns.

Instance N (n⇥m⇥ l) p TNO TMP (red%) TMR (red%) TOP (red%)

1 10.000 (100⇥10⇥10) 5 23,8 12,5 (47,6%) 16,4 (31,1%) 5,1 (78,6%)
2 10.000 (100⇥10⇥10) 10 196,7 185,5 (5,7%) 42,7 (78,3%) 31,4 (84,0%)
3 50.000 (200⇥50⇥5) 5 340,6 84,7 (75,1%) 300,7 (11,7%) 45,6 (86,6%)
4 50.000 (200⇥50⇥5) 10 1.911,9 1.655,3 (13,4%) 354,9 (81,4%) 100,5 (94,7%)
5 100.000 (100⇥50⇥20) 5 1.784,0 255,6 (85,7%) 1.698,8 (4,8%) 178,7 (90,0%)
6 100.000 (100⇥50⇥20) 10 6.027,5 4.499,5 (25,4%) 2.255,8 (62,6%) 733,7 (87,8%)
7 300.000 (200⇥50⇥30) 5 15.991,3 1.600,4 (90,0%) 15.679,1 (2,0%) 1.344,8 (91,6%)
8 300.000 (200⇥50⇥30) 10 29.148,3 14.753,7 (49,4%) 17.522,7 (39,9%) 3.186,3 (89,1%)

Table 1: Set of chosen parameters and computational results.

6 Analysis and Conclusion
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Figure 2: Temperature distribution for a 100.000 mesh.

Examining tests 1 through 8, we observe a higher level of
fill-in induces a higher contribution of the reordering strategy
on the final time reduction, while on the lower level the
matrix partitioning strategy is responsible for the biggest
improvement. Furthermore, by increasing the dimension of
the problem but maintaining the same level of fill-in, the
reduction achieved by the Jacobian optimization increases
while the reduction achieved by the reordering decreases.
Nevertheless, the final time reduction is always higher than
78%, showing the strength in the use of the optimization
strategies. It is worth mentioning that the final execution time
is lower when using ILU(5). The preliminary results obtained
in this work show that the optimization strategies imposed on
the Jacobian evaluation and the GMRES solver significantly
reduced the final execution time for the benchmark 3D
nonlinear heat transfer problem.
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