Network Partitioning in Scientific Simulations - A Case Study

Hélene C. Coullon and Rob H. Bisseling

High-level parallel programming, or implicit par-
allel programming is one of the most important re-
search domains to bring the use of parallel archi-
tectures within easy reach for non computer scien-
tists. The large domain of scientific computations
has, a priori, no requirement limits for performance
and parallelism, and is one of the primary domains
that need implicit parallel programming solutions.
Among all possible scientific computations, simula-
tions based on partial differential equations (PDEs)
are particularly time-consuming. In this context,
the high-level parallel programming library Skel-
GIS has been implemented. SkelGIS [2,3] is an im-
plicit parallelism, and a C+4 header-only, library
to solve mesh-based PDEs in parallel while preserv-
ing a sequential programming style.

Numerical methods to solve partial differential
equations (PDEs) discretize both time and space to
run a simulation on a computer. The discretization
of the space domain is called a mesh. Paralleliza-
tion of a simulation implies the need for a good
load balancing of the mesh among the processors,
and for a minimization of the communication vol-
ume during computations, which could be modeled
as a graph partitioning problem. In some specific
simulations, as for example in artery blood-flow or
river water-flow simulations, a network is created
to represent the domain with two different types
of elements: nodes and edges. A network could
be considered as a general graph where computa-
tions are carried out on both edges and nodes and
where communications are needed from nodes to
edges and from edges to nodes, possibly at differ-
ent time steps. Thus, parallelization of such appli-
cations raises a specific graph partitioning problem,
where both edges and nodes handle computations
and communications at each time iteration.

Partitioning of simulations with several compu-
tation supersteps such as our network simulation
can, in principle, be done by invoking a multi-
constraint hypergraph partitioner [4] as PaToH

for example. Our approach is different: we use
the single-constraint partitioner Mondriaan [5] but
make sure to satisfy both constraints of load bal-
ancing, while minimizing the communication. Two
different methods have been explored: the first one,
named single-partitioning method, is composed of
two steps: (1) the communication superstep from
nodes to edges is translated to a hypergraph par-
titioning problem [1], to distribute the edges, and
(2) a heuristic is applied to distribute the nodes
of the network, taking into account the distribu-
tion of the edges; the second one, named double-
partitioning method, is decomposed in three steps:
(1) the communication step from nodes to edges is
translated to a hypergraph partitioning problem to
distribute the edges, (2) the communication step
from edges to nodes is translated to a hypergraph
partitioning problem to distribute the nodes, and
(3) a permutation problem is solved to match both
distributions. We expect performance results for
the poster presentation.

References

[1] U. V. Catalyiirek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE TPDS,

10(7):673-693, 1999.

[2] H. Coullon, M.-H. Le, and S. Limet. Parallelization
of Shallow-Water Equations with the Algorithmic
Skeleton Library SkelGIS. In ICCS, pages 591-600,
2013.

[3] H. Coullon and S. Limet. Algorithmic skeleton li-
brary for scientific simulations: SkelGIS. In HPCS,
pages 429-436, 2013.

[4] B. Ucar and C. Aykanat. Partitioning sparse ma-
trices for parallel preconditioned iterative methods.
SIAM J. Sci. Comput., 29(4):1683-1709, 2007.

[6] B. Vastenhouw and R. H. Bisseling. A two-
dimensional data distribution method for parallel

sparse matrix-vector multiplication. SIAM Rewv.,
47(1):67-95, 2005.



