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Abstract. The elimination tree for unsymmetric matrices is a recent model playing important roles in sparse
LU factorization. This tree captures the dependencies between the tasks of some well-known variants of sparse LU
factorization. Therefore, the height of the elimination tree roughly corresponds to the critical path length of the task
dependency graph in the corresponding parallel LU methods. We propose algorithms to symmetrically permute the
rows and columns of a given unsymmetric matrix so that the height of the elimination tree is reduced, and thus a high
degree of parallelism is exposed. The proposed algorithms are obtained by generalizing the most successful approaches
used in sparse Cholesky factorization. We test the proposed algorithms on a set of real world matrices and report
noticeable reduction in the elimination tree heights with respect to a possible exploitation of the state of the art tools
used in Cholesky factorization.

1. Introduction. The standard elimination tree [15] has been used to expose parallelism in
sparse Cholesky, LU, and QR factorizations [1, 3, 8, 11]. Roughly, a set of vertices without ances-
tor/descendant relations corresponds to a set of independent tasks that can be performed in parallel.
Therefore, the total number of parallel steps, or the critical path length, is equal to the height of
the tree on an unbounded number of processors [12]. Obtaining an elimination tree with the mini-
mum height for a given matrix is NP-complete [14]. Therefore, heuristic approaches are used. One
set of heuristic approaches is to content oneself with the graph partitioning based methods. These
methods reduce some other important cost metrics in sparse Cholesky factorization, such as the
fill-in and the operation count, while giving a shallow depth elimination tree [7]. When the matrix
is unsymmetric, the elimination tree for LU factorization [4] would be useful to expose parallelism
as well. In this respect, the height of the tree, again, corresponds to the number of parallel steps
or the critical path length for certain factorization schemes. In this work, we develop heuristics to
reduce the height of elimination trees for unsymmetric matrices. To the best of our knowledge no
other work looked at this problem on its own.

Let A be a square matrix and let G(A) = (V(A),E(A)) be the standard directed graph model.
The minimum hight of an elimination tree of A is equivalent to the graph theoretical notion of the
cycle-rank of G(A). Gruber [6] shows that computing the cycle-rank is NP-complete, justifying the
need for heuristics for large problems. One reasonable heuristic is to use a graph partitioning tool,
such as MeTiS [9], on the symmetrized matrix (we present comparisons with this method). One can
also use some local ordering heuristics [2]; but as their analogue for symmetric matrices, these are
not expected to be very effective.

2. Methodology. We propose a recursive approach to reorder a given matrix so that the
elimination tree is reduced. The main procedure takes an irreducible unsymmetric matrix A as
its input, and produces a permutation yielding an upper bordered block diagonal form, as shown
in (2.1)

ABBT = PAPT =


A11 A12 . . . A1K A1B

A22 . . . A2K A2B

. . .
...

...
AKK AKB

AB1 AB2 . . . ABK ABB

 . (2.1)

At each recursive call, the procedure partitions the current matrix into a 2×2 block structure where
the off-diagonal blocks have only a few nonzeros. Then a covering for each off diagonal blocks is
found and the better one is used to have a BBT form with two blocks. Then, the recursion is
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matrix MeTiS BBT-3 BBT-50 matrix MeTiS BBT-3 BBT-50
Averous/epb1 401 325 323 Hohn/fd18 422 307 311
Bai/rw5151 268 168 168 Hohn/sinc12 1836 1206 1181
Goodwin/goodwin 422 369 371 Hollinger/g7jac040 991 762 756
Graham/graham1 549 466 467 Lucifora/cell1 193 125 133
Grund/bayer02 198 123 119 Nasa/barth 142 99 102
Grund/bayer10 211 141 141 Nasa/barth4 133 80 83
Hamrle/Hamrle2 103 67 67 Nasa/barth5 185 117 103
Hohn/fd12 260 199 202 Shen/e40r0100 617 523 597
Hohn/fd15 381 250 251 TOKAMAK/utm5940 448 387 388

Table 3.1
Height of the elimination tree on a set of matrices.

applied to each diagonal block. The recursion stops when the current matrix has a size smaller than
a parameter (we tested with 3 and 50). Then another heuristic based on feedback vertex sets is used
to order the smallest matrices. The overall approach is the unsymmetric analog of pioneering work
on extracting vertex separators from edge separators [13].

3. Results. We present results on matrices used in previous study, where the unsymmetric
elimination trees were algorithmically studied [5]. Table 3.1 compares MeTiS and the proposed
method with the stopping condition of the recursion being 3 and 50, which are shown as BBT-3
and BBT-50. In this table, BBT-3 and BBT-50 obtain tree heights whose geometric mean to the
heights obtained by MeTiS is 0.71 and 0.72, where each run is the median of 5 runs (MeTiS has
randomization inside).

Given this strikingly good results, we further performed tests with other data. We used the
matrices (a subset from [10], where the matrices with a pattern symmetry of a most 0.90 are used,
and only two matrices from each group is used). In this data set, the geometric mean of the heights
of trees obtained by BBT-50 to MeTiS is found to be 0.91.

The poster presentation will include algorithmic details and further details.
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