MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis

Emmanuel AGULLO, Luc GIRAUD, Abdou GUERMOUCHE, Azzam HAIDAR, Jean ROMAN

> INRIA Bordeaux Sud Ouest CERFACS Universite de Bordeaux ´

3rd "Scheduling in Aussois" workshop, Aussois, France, June 2-4, 2010

- 1. [Introduction](#page-2-0)
- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)
- 7. [Perspectives](#page-44-0)

Outline

1. [Introduction](#page-2-0)

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Introduction: general High-Performance framework

Modern platforms

- \star Massively multiprocessors and multicores
- \star Hierarchical structure
- \star Huge number of computational ressources
- \star Heterogeneous ressources (a nodes may contain: multicores, GPUs,...)

Necessity to adapt/design (new) algorithms to efficiently exploit these platforms

New algorithmic constraints

- \star How to achieve a high scalability with codes initially designed to run over "small" number of processors?
- \star How can complex applications/algorithms handle the complex memory hierarchy and heterogeneity?

Introduction: Solving Large Linear Systems

Problem

- \star Given: very Large/Huge *ill*-conditioned sparse linear systems $Ax = b$
- \star Want : solve these linear systems efficiently

A few observations

- \star Industrial problems require thousands of CPU-hours and many Gigabytes of memory storage
- \star Industrial problems are also getting difficult for both direct and iterative methods

Motivations

The "spectrum" of linear algebra solvers

Direct

- \star Robust/accurate for general problems
- \star BLAS-3 based implementations
- \star Memory/CPU prohibitive for large 3*D* problems
- Limited parallel scalability

Iterative

- \star Problem dependent efficiency/controlled accuracy
- Only mat-vect required, fine grain computation
- \star Less memory computation, possible trade-off with CPU
- \star Attractive "build-in" parallel features

Sparse Hybrid (direct/iterative) Linear Solvers

General Hybrid Linear Solvers

- \star Given a matrix A or the adjacency graph of A
- \star Find independents sets of unknowns of A (partitioning or reordering), such that A can be written into that form:

$$
\mathcal{A}\equiv\begin{pmatrix} \mathcal{A_{II}} & \mathcal{A_{II}} \\ \mathcal{A_{II}} & \mathcal{A_{\Gamma\Gamma}} \end{pmatrix}
$$

where $A_{\tau\tau}$ is a block diagonal matrix forming an independent set of unknowns

General partitioning of sparse matrix

- \star Partitioning a matrix using algebraic algorithm based on the adjacency graph of A
- \star No mesh will be used
- \star 2 ways partitioning:
	- Computing an edge separator then finding the best vertex separator
	- Computing a vertex separator

General partitioning of sparse matrix

- \star Partitioning a matrix using algebraic algorithm based on the adjacency graph of $\mathcal A$
- \star No mesh will be used
- \star 2 ways partitioning:
	- Computing an edge separator then finding the best vertex separator
	- Computing a vertex separator

General partitioning of sparse matrix

- * Partitioners: METIS/PARMETIS, SCOTCH/PT-SCOTCH, ZOLTAN, PATOH ...
- \star Recent trend: use of hypergraphs

Outline

1. [Introduction](#page-2-0)

2. [Description of the hybrid approach](#page-10-0)

- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Parallel implementation

 \star Each *subdomain* $A^{(i)}$ is handled by one *processor*

$$
\mathcal{A}^{(i)} \equiv \begin{pmatrix} \mathcal{A}_{\mathcal{I}_i\mathcal{I}_i} & \mathcal{A}_{\mathcal{I}_i\Gamma_i} \\ \mathcal{A}_{\mathcal{I}_i\Gamma_i} & \mathcal{A}_{\Gamma\Gamma}^{(i)} \end{pmatrix}
$$

 \star Concurrent partial factorizations are performed on each processor to form the so called "local Schur complement"

$$
\mathcal{S}^{(i)} = \mathcal{A}_{\Gamma\Gamma}^{(i)} - \mathcal{A}_{\Gamma_i \mathcal{I}_i} \mathcal{A}_{\mathcal{I}_i \mathcal{I}_i}^{-1} \mathcal{A}_{\mathcal{I}_i \Gamma_i}
$$

- \star The reduced system $S_{X_{\Gamma}} = f$ is solved using a distributed Krylov solver
	- One matrix vector product per iteration each processor computes $S^{(i)}(x_{\Gamma}^{(i)})^k = (y^{(i)})^k$
	- One local preconditioner apply $(\mathcal{M}^{(i)})(z^{(i)})^k = (r^{(i)})^k$
	- Local neighbor-neighbor communication per iteration
	- Global reduction (dot products)
- \star Compute simultaneously the solution for the interior unknowns

$$
\mathcal{A}_{\mathcal{I}_i\mathcal{I}_i}\mathcal{X}_{\mathcal{I}_i}=b_{\mathcal{I}_i}-\mathcal{A}_{\mathcal{I}_i\Gamma_i}\mathcal{X}_{\Gamma_i}
$$

Description of the hybrid approach Algebraic Additive Schwarz preconditioner

Algebraic Additive Schwarz preconditioner

Brief description [L.Carvalho, L.Giraud, G.Meurant 01]

$$
\mathcal{M} = \sum_{i=1}^{N} \mathcal{R}_{\Gamma_i}^T (\bar{S}^{(i)})^{-1} \mathcal{R}_{\Gamma_i}
$$

\nwhere $\bar{S}^{(i)}$ is obtained from
\n
$$
S^{(i)}
$$
 via neighbor to neighbor
\ncomm
\n
$$
\sum_{\iota \in adj} S^{(i)} = \begin{pmatrix} S_{kk} & S_{\ell\ell} \\ S_{\ell k} & S_{\ell\ell} \end{pmatrix}
$$

\nlocal Schur
\nlocal assembly
\nlocal assembly
\nlocal assembly

References

 $M = \sum_{i=1}^{N}$ *i*=1

 $\mathcal{R}^T_{\Gamma_i}(\bar{\mathcal{S}}^{(i)})^{-1}\mathcal{R}_{\Gamma_i}$

comm

L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability study of hybrid preconditioners in three dimensions. *Parallel Computing*, 34:363–379, 2008.

Ħ

L. M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-level non-overlapping domain decomposition methods. *Numerical Linear Algebra with Applications*, 8(4):207–227, 2001.

What tricks exist to construct cheaper preconditioners

Sparsification strategy

 \star Sparsify the preconditioner by dropping the smallest entries

$$
\widehat{s}_{k\ell} = \left\{ \begin{array}{ll} \bar{s}_{k\ell} & \text{if} \qquad \bar{s}_{k\ell} \ge \xi(|\bar{s}_{kk}| + |\bar{s}_{\ell\ell}|) \\ 0 & \text{else} \end{array} \right.
$$

- \star Good in many PDE contexts
- \star Remarks: This sparse strategy was originally developed for SPD matrices

Mixed arithmetic strategy

- \star Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?
- \star Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!
- \star Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
- \star Remarks: the backward stability result of GMRES indicates that it is hopeless to expect convergence at a backward error level smaller than the 32-bit accuracy [C.Paige, M.Rozložník, Z.Strakoš - 06]
- \star Idea: To overcome this limitation we use FGMRES [Y.Saad 93]

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Computational framework

Computational framework

Target computer

- \star IBM SP4 ω CINES
- \star Cray XD1 @ CERFACS
- \star IBM JS21 @ CERFACS
- Blue Gene/L @ CERFACS
- \star IBM SP4 ω IDRIS
- ★ System X @ VIRGINIA TECH

System X @ VIRGINIA TECH

- \star 2200 processors
- \star Apple Xserve G5
- \star 2-Way SMP
- running at 2.3 GHz
- \star 4 Gbytes/node
- latency of 6.1 μ s

Blue Gene/L @ **CERFACS**

- \star 4096 processors
- \star PowerPC 440s
- \star 2-Way SMP
- \star running at 700 MHz
- 1 Gbytes/node
- latency of $1.3 10$ μ S

IBM JS21 @ **CERFACS**

- \star 216 processors
- \star PowerPC 970MP
- \star 4-Way SMP
- \star running at 2.5 GHz
- \star 8 Gbytes/node
- \star latency of 3.2 μ s

Software framework

Software framework

- \star METIS G. Karypis and V. Kumar
	- Partitioning tool
	- Public domain:

http://glaros.dtc.umn.edu/gkhome/metis/metis/

\star MUMPS P. Amestov et al.

- Local direct solver
- Parallel distributed multifrontal solver
- Public domain:

http://mumps.enseeiht.fr/

\star CG/GMRES/FGMRES V.Frayssé, L.Giraud

- Parallel distributed iterative solver
- Public domain:

http://www.cerfacs.fr/algor/Softs/

Outline

1. [Introduction](#page-2-0)

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)

4. Experiments on large 3*D* [academic model problems](#page-17-0)

- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Experiments on large 3*D* academic model problems

Academic model problems

Problem patterns

Diffusion equation $(e = 1 \text{ and } v = 0)$ and convection-diffusion equation

$$
\begin{cases}\n-\epsilon \text{div}(K.\nabla u) + v.\nabla u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

- \star Heterogeneous problems
- \star Anisotropic-heterogeneous problems
- Convection dominated term

Numerical behaviour of sparse preconditioners

Convergence history of PCG

Time history of PCG

- \star 3*D* heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors
- \star For ($\xi \ll 1$ the convergence is marginally affected while the memory saving is significant 15%
- \star For ($\xi \gg$) a lot of resources are saved but the convergence becomes very poor 1%
- \star Even though they require more iterations, the sparsified variants converge faster as the time per iteration is smaller and the setup of the preconditioner is cheaper.

HiePACS [MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis](#page-0-0) 20

Experiments on large 3*D* academic model problems Weak scalability on diffusion equations

- \star The solved problem size varies from 2.7 up to 74 Mdof
- \star Control the grow in the # of iterations by introducing a coarse space correction
- \star The computing time increases slightly when increasing # sub-domains
- \star Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable
- The trend is similar for all variants of the preconditioners using CG Krylov solver

Approximate Schur variant

Difficulties

- \star The computation of the exact local Schur complement is expensive
- \star Large amount of memory storage is required for very large applications

Approximate Schur variant of the preconditioner

$$
pILU\left(A^{(i)}\right) \equiv pILU\begin{pmatrix} A_{ii} & A_{i\Gamma_i} \\ A_{\Gamma_i i} & A_{\Gamma_i \Gamma_i}^{(i)} \end{pmatrix} \equiv \begin{pmatrix} \tilde{L}_i & 0 \\ A_{\Gamma i} \tilde{U}_i^{-1} & I \end{pmatrix} \begin{pmatrix} \tilde{U}_i & \tilde{L}_i^{-1} A_{i\Gamma} \\ 0 & \tilde{S}^{(i)} \end{pmatrix}
$$

where

$$
\tilde{S}^{(i)} = A_{\Gamma_i \Gamma_i}^{(i)} - A_{\Gamma_i i} \tilde{U}_i^{-1} \tilde{L}_i^{-1} A_{i \Gamma_i}
$$

Approximate Schur aproach: motivations joint work with Y. Saad

Exact vs. approximate Schur: memory saving (MB)

Exact vs. approximate Schur: computing time (sec)

Numerical behaviour of approximate preconditioners

- \star 3*D* heterogeneous convection-diffusion problem of 74 Mdof mapped on 1728 processors
- \star the convergence is marginally affected while the memory saving is significant
- \star Even though they require more iterations, the approximate variant converge faster as the time per iteration is smaller and the setup of the preconditioner is cheaper.

Experiments on large 3*D* academic model problems Weak scalability on convection-diffusion equations

Weak scalability on massively parallel platforms

- The solved problem size varies from 2.7 up to 74 Mdof
- The computing time increases slightly when increasing # sub-domains
- \star Even if the number of iterations to converge increases as the number of subdomains increases, the parallel scalability of the preconditioners remains acceptable

Summary on the model problems

Ref: [L.Giraud, A.Haidar, L.T.Watson - 08] & [L.Giraud, A.Haidar, Y.Saad - 09]

Sparse preconditioner

- \star For reasonable choice of the dropping parameter ξ the convergence is marginally affected
- \star The sparse preconditioner outperforms the dense one in time and memory

Approximate preconditioner

- \star The convergence is marginally affected while the memory saving is significant
- \star The approximate variant converge faster as the time per iteration is smaller and the setup of the preconditioner is cheaper.
- \star This preconditioner require some tuning for very hard problem (structural mechanics...)

On the weak scalability

- \star Although these preconditioners are local, possibly not numerically scalable, they exhibit a fairly good parallel time scalability (possible fix for elliptic problems)
- \star The trends that have been observed on this choice of model problem have been observed on many other problems

Outline

1. [Introduction](#page-2-0)

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

MaPHyS package

- \star Study the performance of the hybrid solver in real life applications
- \star Example: structural mechanics (indefinite system), electromagnetism, Helmholtz . . .
- \star Study the behavior of the preconditioner on more general problems
- \star Black-box hybrid solver MAPHYS package

Indefinite systems in structural mechanics s. Pralet, SAMTECH

- frames
- Midlinn shell elements are used
- \star Fach node has 6 unknowns
- \star A force perpendicular to the axis is applied

Rouet of 1.3 Mdof

- \star A 90 degrees sector of an impeller
- It is composed of 3D volume elements
- \star Cyclic conditions are added using elements with 3 Lagranges multipliers
- Angular velocities are introduced

Experiments on large 3*D* real life applications MAPHYS: numerical behaviour on structural mechanics problems

MAPHYS: numerical behaviour of the preconditioners

- \star Fuselage problem of 6.5 Mdof dof mapped on 16 processors
- \star The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89) seconds)
- \star In term of global computing time, the sparse algorithm is about twice faster
- \star The attainable accuracy of the hybrid solver is comparable to the one computed with the direct solver

HiePACS [MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis](#page-0-0) 30

Black-box hybrid solver: problem characteristics

Amande (Almond) problem

- \star Electromagnetism problem
- \star 6,994,683 dof
- \star 58,477,383 nnz

half elipsoi

Haltere problem

- \star Electromagnetism problem
- ^F 1,288,825 dof
- \star 10,476,775 nnz

Audi problem

- \star Structural mechanics problem
- \star 943,695 dof
- \star 39,297,771 nnz

MAPHYS: Amande problem

- \star Amende problem of 6.99 Mdof mapped on 32 processors
- \star In term of computing time, the sparse algorithm is about twice faster
- \star The global sparse preconditioner perform very well on this number of processors
- \star The attainable accuracy of the hybrid solver is comparable to the one computed with the direct solver

MAPHYS: Haltere problem

- \star Haltere problem of 1.3 Mdof mapped on 32 processors
- \star The local sparse algorithm perform as well as the dense
- \star The global sparse preconditioner perform very well on this number of processors
- \star The attainable accuracy of the hybrid solver is comparable to the one computed with the direct solver

Experiments on large 3*D* real life applications MAPHYS: numerical behaviour on large 3*D* problems

MAPHYS: AUDI problem

Convergence history Time history **AUDI−16procs AUDI−16procs** 10⁰ **Direct calculation 100 MaPHyS local densepcond MaPHyS local sparsepcond 2% 10−2 10−2 MaPHyS local sparsepcond 4% Direct calculation MaPHyS local sparsepcond 9% 10−4 MaPHyS local sparsepcond 13% 10−4 MaPHyS local densepcond** الكتن المناسب **MaPHyS local sparsepcond 2% MaPHyS local sparsepcond 4% 10−6 10−6 ||r k||/||b|| ||r k||/||b|| MaPHyS local sparsepcond 9% MaPHyS local sparsepcond 13% 10−8 10−8 10−10 10−10 10−12 10−12 10−14 10−14 10−16 10−16 0 40 80 120 160 200 240 280 320 360 400 440 480 0 40 80 120 160 200 # iter Time(sec)**

- Audi problem of 0.9 Mdof mapped on 16 processors
- For ($\xi \ll 1$) the convergence is marginally affected while the memory saving is significant
- \star For ($\xi \gg$) a lot of resources are saved but the convergence becomes very poor
- \star Even though they require more iterations, the sparsified variants performs faster
- The attainable accuracy of the hybrid solver is comparable to the one computed with HiePACS [MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis](#page-0-0) 34

Outline

1. [Introduction](#page-2-0)

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Framework

n σ -separator theorem

A family of (structurally symmetric) matrices satisfies a *n* σ -separator theorem when the graph associated to a matrix can be recursively partitionned as follows:

$$
\star \, G = (V, E), \, |V| = n;
$$

- $\star V = A \cup B \cup C$, *C* topological separator;
- \star |*A*|, |*B*| $\leq \alpha n$, $C \leq \beta n^{\sigma}$;
- \star 0 < α < 1, β > 0, 1/2 $\leq \sigma \leq$ 1, constant for the family.

-
-
-

Framework

n σ -separator theorem

A family of (structurally symmetric) matrices satisfies a *n* σ -separator theorem when the graph associated to a matrix can be recursively partitionned as follows:

$$
\star \, G = (V, E), \, |V| = n;
$$

- $\star V = A \cup B \cup C$, *C* topological separator;
- \star |*A*|, |*B*| $\leq \alpha n$, $C \leq \beta n^{\sigma}$;
- \star 0 < α < 1, β > 0, 1/2 $\leq \sigma \leq$ 1, constant for the family.

- \star 2D Grids: $\sigma = 1/2$ → 2D Finite Elements;
- \star 3D Grids: $\sigma = 2/3$ → 3D Finite Elements;
- \star Bounded density graphs in dimension *d*: $\sigma = \frac{d-1}{d}$.

Framework

n σ -separator theorem

A family of (structurally symmetric) matrices satisfies a *n* σ -separator theorem when the graph associated to a matrix can be recursively partitionned as follows:

$$
\star \ \ G=(V,E),\,|V|=n;
$$

 $\star V = A \cup B \cup C$, *C* topological separator;

$$
\star |A|, |B| \leq \alpha n, C \leq \beta n^{\sigma};
$$

 \star 0 < α < 1, β > 0, 1/2 $\leq \sigma \leq$ 1, constant for the family.

Examples

- \star 2D Grids: $\sigma = 1/2$ → 2D Finite Elements;
- \star 3D Grids: $\sigma = 2/3 \rightarrow 3D$ Finite Elements;
- \star Bounded density graphs in dimension *d*: $\sigma = \frac{d-1}{d}$.

Partition tree

Partition tree

Recursively partition the graph using such separators

Partition tree

Partition tree

Recursively partition the graph using such separators

Partition tree

Partition tree

Recursively partition the graph using such separators

Switch point (p')

Switch point

- \star Top of the tree $(0 \dots p'$ levels): iterative method (Krylov);
- \star Bottom of the tree: local direct methods.

Choose p' such that \dots

Switch point (p')

Switch point

- \star Top of the tree $(0 \dots p'$ levels): iterative method (Krylov);
- \star Bottom of the tree: local direct methods.

Choose p' such that \dots

Preliminary complexity analysis

Example of application

Diffusion problems

 \star Upper bound on the number of iterations;

$$
\star \ \sigma = 2/3:
$$

- **•** hybrid: $\theta(n^{4/3})$;
- ► direct: $\theta(n^2)$;

- 2. [Description of the hybrid approach](#page-10-0)
- 3. [Experimental environment](#page-14-0)
- 4. Experiments on large 3*D* [academic model problems](#page-17-0)
- 5. [Experiments on large](#page-26-0) 3*D* real life applications
- 6. [Preliminary complexity analysis](#page-34-0)

7. [Perspectives](#page-44-0)

Perspectives

Complexity analysis

- \star Memory requirements;
- \star Study of the parallel case;
- \star Other classes of problems;
- \star Assessing the model with experimental results.

MaPHyS

- \star Integration of other direct solvers (multithreaded PaSTiX);
- \star Integration of other partitioners (Scotch/PT-Scotch);
- \star Compare to other hybrid solvers (Henon et al.; Li et al.).

THANK YOU FOR YOUR ATTENTION

QUESTIONS?