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Introduction

Introduction: general High-Performance framework

Modern platforms
F Massively multiprocessors and multicores

F Hierarchical structure

F Huge number of computational ressources

F Heterogeneous ressources (a nodes may contain: multicores,
GPUs,...)

Necessity to adapt/design (new) algorithms to efficiently exploit these
platforms

New algorithmic constraints
F How to achieve a high scalability with codes initially designed to run

over “small” number of processors?

F How can complex applications/algorithms handle the complex
memory hierarchy and heterogeneity?
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Introduction

Introduction: Solving Large Linear Systems

Problem
F Given: very Large/Huge ill-conditioned sparse linear systems Ax = b

F Want : solve these linear systems efficiently

A few observations
F Industrial problems require thousands of CPU-hours and many

Gigabytes of memory storage

F Industrial problems are also getting difficult for both direct and
iterative methods
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Introduction

Motivations
Ax = b

The “spectrum” of linear algebra solvers
Direct

F Robust/accurate for general
problems

F BLAS-3 based
implementations

F Memory/CPU prohibitive for
large 3D problems

F Limited parallel scalability

Iterative
F Problem dependent efficiency/controlled

accuracy
F Only mat-vect required, fine grain

computation
F Less memory computation, possible

trade-off with CPU
F Attractive “build-in” parallel features
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Introduction

Sparse Hybrid (direct/iterative) Linear Solvers

General Hybrid Linear Solvers
F Given a matrix A or the adjacency graph of A
F Find independents sets of unknowns of A (partitioning or

reordering), such that A can be written into that form:

A ≡
(
AII AIΓ

AIΓ AΓΓ

)
where AII is a block diagonal matrix forming an independent set of
unknowns
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Introduction

General partitioning of sparse matrix

Mesh view
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F Partitioning a matrix using algebraic algorithm based on the adjacency graph of A

F No mesh will be used

F 2 ways partitioning:
- Computing an edge separator then finding the best vertex separator
- Computing a vertex separator
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Introduction
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Introduction

General partitioning of sparse matrix
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F Partitioners: METIS/PARMETIS, SCOTCH/PT-SCOTCH, ZOLTAN,
PATOH . . .

F Recent trend: use of hypergraphs

HiePACS MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis 10



Description of the hybrid approach

Outline

1. Introduction

2. Description of the hybrid approach

3. Experimental environment

4. Experiments on large 3D academic model problems

5. Experiments on large 3D real life applications

6. Preliminary complexity analysis

7. Perspectives

HiePACS MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis 11



Description of the hybrid approach Parallel implementation

Parallel implementation
F Each subdomain A(i) is handled by one processor

A(i) ≡
(
AIiIi AIiΓi

AIiΓi A(i)
ΓΓ

)
F Concurrent partial factorizations are performed on each processor to

form the so called “local Schur complement”

S(i) = A(i)
ΓΓ −AΓiIiA−1

IiIi
AIiΓi

F The reduced system SxΓ = f is solved using a distributed Krylov
solver

- One matrix vector product per iteration each processor computes
S(i)(x(i)

Γ )k = (y(i))k

- One local preconditioner apply (M(i))(z(i))k = (r(i))k

- Local neighbor-neighbor communication per iteration
- Global reduction (dot products)

F Compute simultaneously the solution for the interior unknowns

AIiIi xIi = bIi −AIiΓi xΓi
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Description of the hybrid approach Algebraic Additive Schwarz preconditioner

Algebraic Additive Schwarz preconditioner
Brief description [ L.Carvalho, L.Giraud, G.Meurant 01]

M =
N∑

i=1

RT
Γi

(S̄(i))−1RΓi

where S̄(i) is obtained from
S(i) via neighbor to neighbor
comm

S(i) =

(
S(ι)

kk Sk`

S`k S(ι)
``

)
︸ ︷︷ ︸ =⇒

S̄(i) =

(
Skk Sk`
S`k S``

)
︸ ︷︷ ︸

local Schur local assembled Schur
↘ ↗∑

ι∈adj

S(ι)
``

References

L. Giraud, A. Haidar, and L. T. Watson.
Parallel scalability study of hybrid preconditioners in three dimensions.
Parallel Computing, 34:363–379, 2008.

L. M. Carvalho, L. Giraud, and G. Meurant.
Local preconditioners for two-level non-overlapping domain decomposition methods.
Numerical Linear Algebra with Applications, 8(4):207–227, 2001.
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Description of the hybrid approach Variants of Additive Schwarz preconditioner

What tricks exist to construct cheaper preconditioners
Sparsification strategy

F Sparsify the preconditioner by dropping the smallest entries

ŝk` =

{
s̄k` if s̄k` ≥ ξ(|̄skk|+ |̄s``|)
0 else

F Good in many PDE contexts
F Remarks: This sparse strategy was originally developed for SPD matrices

Mixed arithmetic strategy
F Compute and store the preconditioner in 32-bit precision arithmetic Is accurate

enough?
F Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix

it!
F Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
F Remarks: the backward stability result of GMRES indicates that it is hopeless to

expect convergence at a backward error level smaller than the 32-bit accuracy
[C.Paige, M.Rozložnı́k, Z.Strakoš - 06]

F Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]
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Computational framework

Computational framework
Target computer

F IBM SP4 @ CINES
F Cray XD1 @ CERFACS
F IBM JS21 @ CERFACS
F Blue Gene/L @ CERFACS
F IBM SP4 @ IDRIS
F System X @ VIRGINIA TECH

System X @
VIRGINIA TECH

F 2200 processors
F Apple Xserve G5
F 2-Way SMP
F running at 2.3 GHz
F 4 Gbytes/node
F latency of 6.1 µs

Blue Gene/L @
CERFACS

F 4096 processors
F PowerPC 440s
F 2-Way SMP
F running at 700 MHz
F 1 Gbytes/node
F latency of 1.3 - 10

µs

IBM JS21 @
CERFACS

F 216 processors
F PowerPC 970MP
F 4-Way SMP
F running at 2.5 GHz
F 8 Gbytes/node
F latency of 3.2 µs
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Software framework

Software framework

Software framework
F METIS G. Karypis and V. Kumar

- Partitioning tool
- Public domain:
http://glaros.dtc.umn.edu/gkhome/metis/metis/

F MUMPS P.Amestoy et al.
- Local direct solver
- Parallel distributed multifrontal solver
- Public domain:
http://mumps.enseeiht.fr/

F CG/GMRES/FGMRES V.Frayssé, L.Giraud
- Parallel distributed iterative solver
- Public domain:
http://www.cerfacs.fr/algor/Softs/
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Experiments on large 3D academic model problems

Academic model problems
Problem patterns
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Circular flow velocity Problem −1−

Diffusion equation (ε = 1 and v = 0) and convection-diffusion
equation {

−εdiv(K.∇u) + v.∇u = f in Ω,
u = 0 on ∂Ω.

F Heterogeneous problems
F Anisotropic-heterogeneous problems
F Convection dominated term
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Experiments on large 3D academic model problems Numerical behaviour on diffusion equations

Numerical behaviour of sparse preconditioners
Convergence history of PCG
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F 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

F For (ξ ≪)the convergence is marginally affected while the memory saving is

significant 15%

F For (ξ ≫) a lot of resources are saved but the convergence becomes very poor 1%

F Even though they require more iterations, the sparsified variants converge faster as

the time per iteration is smaller and the setup of the preconditioner is cheaper.
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Experiments on large 3D academic model problems Weak scalability on diffusion equations

Weak scalability on massively parallel platforms
Numerical scalability
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Parallel performance
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Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

     5.3.106    15.106  22.106     31.106     43.106          55.106           74.106

F The solved problem size varies from 2.7 up to 74 Mdof

F Control the grow in the # of iterations by introducing a coarse space correction

F The computing time increases slightly when increasing # sub-domains

F Although the preconditioners do not scale perfectly, the parallel time scalability is

acceptable

F The trend is similar for all variants of the preconditioners using CG Krylov solver
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Experiments on large 3D academic model problems Approximate S variant of the preconditioner

Approximate Schur variant

Difficulties
F The computation of the exact local Schur complement is expensive
F Large amount of memory storage is required for very large applications

Approximate Schur variant of the preconditioner

pILU (A(i)) ≡ pILU

(
Aii AiΓi

AΓii A(i)
ΓiΓi

)
≡
(

L̃i 0
AΓiŨ

−1
i I

)(
Ũi L̃−1

i AiΓ
0 S̃(i)

)
where

S̃(i) = A(i)
ΓiΓi
− AΓiiŨ

−1
i L̃−1

i AiΓi
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Experiments on large 3D academic model problems Approximate S variant of the preconditioner

Approximate Schur aproach: motivations joint work with Y. Saad

Exact vs. approximate Schur: memory saving (MB)
sub-domain mesh size

kept entries 253 303 353 403 453 503 553

in factor 15 Kdof 27 Kdof 43 Kdof 64 Kdof 91 Kdof 125 Kdof 166 Kdof
Exact: 100% in U 254 551 1058 1861 3091 4760 7108
Appro: 21% in U 55 114 216 383 654 998 1506

Exact vs. approximate Schur: computing time (sec)
sub-domain grid size

kept entries 253 303 353 403 453 503 553

in factor 15 Kdof 27 Kdof 43 Kdof 64 Kdof 91 Kdof 125 Kdof 166 Kdof
Exact: 100% in U 4.1 12.1 35.4 67.6 137 245 581
Appro: 21% in U 6.1 15.1 31.2 60.8 128 208 351
Appro: 10% in U 2.9 7.5 16.5 29.8 64 100 169
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Experiments on large 3D academic model problems Numerical behaviour on convection-diffusion equations

Numerical behaviour of approximate preconditioners
Convergence history of
GMRES
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F 3D heterogeneous convection-diffusion problem of 74 Mdof mapped on 1728

processors

F the convergence is marginally affected while the memory saving is significant

F Even though they require more iterations, the approximate variant converge faster as

the time per iteration is smaller and the setup of the preconditioner is cheaper.
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Experiments on large 3D academic model problems Weak scalability on convection-diffusion equations

Weak scalability on massively parallel platforms

Numerical scalability
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Parallel performance
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F The solved problem size varies from 2.7 up to 74 Mdof

F The computing time increases slightly when increasing # sub-domains

F Even if the number of iterations to converge increases as the number of subdomains

increases, the parallel scalability of the preconditioners remains acceptable
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Summary on the model problems
Ref: [L.Giraud, A.Haidar, L.T.Watson - 08] & [L.Giraud, A.Haidar, Y.Saad - 09]

Sparse preconditioner
F For reasonable choice of the dropping parameter ξ the convergence is marginally

affected
F The sparse preconditioner outperforms the dense one in time and memory

Approximate preconditioner
F The convergence is marginally affected while the memory saving is significant
F The approximate variant converge faster as the time per iteration is smaller and the

setup of the preconditioner is cheaper.
F This preconditioner require some tuning for very hard problem (structural

mechanics...)

On the weak scalability
F Although these preconditioners are local, possibly not numerically scalable, they

exhibit a fairly good parallel time scalability (possible fix for elliptic problems)
F The trends that have been observed on this choice of model problem have been

observed on many other problems
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Experiments on large 3D real life applications MAPHYS package

MaPHyS package

F Study the performance of the hybrid solver in real life
applications

F Example: structural mechanics (indefinite system),
electromagnetism, Helmholtz . . .

F Study the behavior of the preconditioner on more general
problems

F Black-box hybrid solver MAPHYS package
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Experiments on large 3D real life applications MAPHYS black-box hybrid solver: structural mechanics problems

Indefinite systems in structural mechanics S. Pralet, SAMTECH

Fuselage of 6.5 Mdof

F Composed of its skin, stringers and
frames

F Midlinn shell elements are used
F Each node has 6 unknowns
F A force perpendicular to the axis is

applied

Rouet of 1.3 Mdof

F A 90 degrees sector of an impeller
F It is composed of 3D volume

elements
F Cyclic conditions are added using

elements with 3 Lagranges
multipliers

F Angular velocities are introduced
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Experiments on large 3D real life applications MAPHYS: numerical behaviour on structural mechanics problems

MAPHYS: numerical behaviour of the preconditioners
Convergence history
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Direct calculation

Dense calculation
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F Fuselage problem of 6.5 Mdof dof mapped on 16 processors

F The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89

seconds)

F In term of global computing time, the sparse algorithm is about twice faster

F The attainable accuracy of the hybrid solver is comparable to the one computed with

the direct solver
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Experiments on large 3D real life applications MAPHYS black-box hybrid solver: Large 3D problems

Black-box hybrid solver: problem characteristics

Amande (Almond) problem

F Electromagnetism problem
F 6,994,683 dof
F 58,477,383 nnz

Haltere problem
F Electromagnetism problem
F 1,288,825 dof
F 10,476,775 nnz

Audi problem
F Structural mechanics problem
F 943,695 dof
F 39,297,771 nnz
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Experiments on large 3D real life applications MAPHYS: numerical behaviour on large 3D problems

MAPHYS: Amande problem

Convergence history
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Direct calculation
MaPHyS local densepcond
MaPHyS local sparsepcond 4%
MaPHyS global sparsepcond 4%

F Amende problem of 6.99 Mdof mapped on 32 processors

F In term of computing time, the sparse algorithm is about twice faster

F The global sparse preconditioner perform very well on this number of processors

F The attainable accuracy of the hybrid solver is comparable to the one computed with

the direct solver
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Experiments on large 3D real life applications MAPHYS: numerical behaviour on large 3D problems

MAPHYS: Haltere problem

Convergence history
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Direct calculation

MaPHyS local densepcond

MaPHyS local sparsepcond 3%

MaPHyS global sparsepcond 3%

F Haltere problem of 1.3 Mdof mapped on 32 processors

F The local sparse algorithm perform as well as the dense

F The global sparse preconditioner perform very well on this number of processors

F The attainable accuracy of the hybrid solver is comparable to the one computed with

the direct solver
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Experiments on large 3D real life applications MAPHYS: numerical behaviour on large 3D problems

MAPHYS: AUDI problem
Convergence history
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Direct calculation
MaPHyS local densepcond
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Direct calculation

MaPHyS local densepcond

MaPHyS local sparsepcond 2%

MaPHyS local sparsepcond 4%

MaPHyS local sparsepcond 9%

MaPHyS local sparsepcond 13%

F Audi problem of 0.9 Mdof mapped on 16 processors
F For (ξ ≪) the convergence is marginally affected while the memory saving is

significant
F For (ξ ≫) a lot of resources are saved but the convergence becomes very poor
F Even though they require more iterations, the sparsified variants performs faster
F The attainable accuracy of the hybrid solver is comparable to the one computed with

the direct solver
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Preliminary complexity analysis

Framework

nσ-separator theorem
A family of (structurally symmetric) matrices satisfies a
nσ-separator theorem when the graph associated to a matrix can
be recursively partitionned as follows:

F G = (V,E), |V| = n;
F V = A ∪ B ∪ C, C topological separator;
F |A|, |B| ≤ αn, C ≤ βnσ;
F 0 < α < 1, β > 0, 1/2 ≤ σ ≤ 1, constant for the family.

Examples
F 2D Grids: σ = 1/2→ 2D Finite Elements;
F 3D Grids: σ = 2/3→ 3D Finite Elements;
F Bounded density graphs in dimension d: σ = d−1

d .

HiePACS MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis 36



Preliminary complexity analysis

Framework

nσ-separator theorem
A family of (structurally symmetric) matrices satisfies a
nσ-separator theorem when the graph associated to a matrix can
be recursively partitionned as follows:

F G = (V,E), |V| = n;
F V = A ∪ B ∪ C, C topological separator;
F |A|, |B| ≤ αn, C ≤ βnσ;
F 0 < α < 1, β > 0, 1/2 ≤ σ ≤ 1, constant for the family.

Examples
F 2D Grids: σ = 1/2→ 2D Finite Elements;
F 3D Grids: σ = 2/3→ 3D Finite Elements;
F Bounded density graphs in dimension d: σ = d−1

d .
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Preliminary complexity analysis

Partition tree

Partition tree
Recursively partition the graph using such separators

V2 V3
C1

C2 C3

V1

V2i V2i+1Ci

Vi (ni)

F Binary tree with indices Ip = [|2p; 2p+1 − 1|] at level p
(0 ≤ p ≤ P);

F (1− αni)− βnσi ≤ n2i, n2i+1 ≤ αni ; |ci| ≤ βnσi .
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Preliminary complexity analysis

Partition tree

Partition tree
Recursively partition the graph using such separators

V2i V2i+1

Ci

Vi

Cocycle of Vi of size bi

Interface of size si
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Preliminary complexity analysis

Switch point (p′)

Switch point
F Top of the tree (0 . . . p′ levels): iterative method (Krylov);
F Bottom of the tree: local direct methods.
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Switch point (p′)

Switch point
F Top of the tree (0 . . . p′ levels): iterative method (Krylov);
F Bottom of the tree: local direct methods.

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

V2 V3

P’

Choose p′ such that . . .
HiePACS MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis 38



Preliminary complexity analysis

Example of application

Diffusion problems
F Upper bound on the number of iterations;
F σ = 2/3:

I hybrid: θ(n4/3);
I direct: θ(n2);
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Outline

1. Introduction

2. Description of the hybrid approach

3. Experimental environment

4. Experiments on large 3D academic model problems

5. Experiments on large 3D real life applications

6. Preliminary complexity analysis

7. Perspectives

HiePACS MaPHyS, a sparse hybrid linear solver and preliminary complexity analysis 40



Perspectives

Complexity analysis
F Memory requirements;
F Study of the parallel case;
F Other classes of problems;
F Assessing the model with experimental results.

MaPHyS
F Integration of other direct solvers (multithreaded PaSTiX);
F Integration of other partitioners (Scotch/PT-Scotch);
F Compare to other hybrid solvers (Henon et al.; Li et al.).

THANK YOU FOR YOUR ATTENTION

QUESTIONS?
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