Sparse matrix partitioning, ordering, and visualisation by Mondriaan 3.0

Rob H. Bisseling, Albert-Jan Yzelman, Bas Fagginger Auer

Mathematical Institute, Utrecht University

Albert-Jan

Workshop Scheduling in Aussois, June 4, 2010

Universiteit Utrecht

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) **[Ordering](#page-23-0)**

[SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

[Partitioning problems](#page-2-0)

[Parallel sparse matrix–vector multiplication](#page-4-0) [Visualisation by MondriaanMovie](#page-8-0) [Hypergraphs](#page-11-0) [2D matrix partitioning](#page-15-0)

[Ordering problems](#page-23-0)

[Separated Block Diagonal structure](#page-23-0)

[Parallel computing revolution](#page-30-0)

[Conclusions and future work](#page-32-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0) **[SBD](#page-23-0)** [Revolution](#page-30-0)

[Conclusions](#page-32-0)

Motivation: sparse matrix memplus

 17758×17758 matrix with 126150 nonzeros. Contributed to MatrixMarket in 1995 by Steve Hamm (Motorola). Represents the design of a memory circuit. Iterative solver multiplies matrix repeatedly with a vector.

Universiteit Utrecht

Motivation: high-performance computer

- \triangleright National supercomputer Huygens named after Christiaan Huygens. Wikipédia: "En 1655, Huygens découvrit Titan, la lune de Saturne. Il examina également les anneaux de Saturne et établit qu'il s'agissait bien d'un anneau entourant la planète"
- \blacktriangleright Huygens, the machine, has 104 nodes
- Each node has 16 processors
- Each processor has 2 cores and a a shared L3 cache
- [E](#page-4-0)[a](#page-1-0)[c](#page-2-0)[h](#page-3-0)[co](#page-1-0)[r](#page-2-0)[e](#page-22-0) [ha](#page-0-0)[s a](#page-32-0) local L1 and L2 cache

[Outline](#page-1-0)

[Partitioning](#page-2-0)

[Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Parallel sparse matrix–vector multiplication $\mathbf{u} := A\mathbf{v}$

A sparse $m \times n$ matrix, **u** dense m-vector, **v** dense n-vector

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) **[Ordering](#page-23-0)** [SBD](#page-23-0) [Revolution](#page-30-0) [Conclusions](#page-32-0)

[Outline](#page-1-0)

4 supersteps: communicate, compute, communicate, compute

Divide evenly over 4 processors

[Outline](#page-1-0)

[Partitioning](#page-2-0)

[Matrix-vector](#page-4-0)

[Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Composition with Red, Yellow, Blue and Black

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) **[Ordering](#page-23-0)** [SBD](#page-23-0) [Revolution](#page-30-0) [Conclusions](#page-32-0)

[Outline](#page-1-0)

Piet Mondriaan 1921

Matrix prime60

[Outline](#page-1-0)

[Partitioning](#page-2-0)

[Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

- Mondriaan block partitioning of 60×60 matrix prime 60 with 462 nonzeros, for $p = 4$
- $\rightarrow a_{ii} \neq 0 \Longleftrightarrow i|j \text{ or } j|i \qquad (1 \leq i, j \leq 60)$

Avoid communication completely, if you can

All nonzeros in a row or column have the same colour.

Universiteit Utrecht

[Outline](#page-1-0) [Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) **[Ordering](#page-23-0)** [SBD](#page-23-0) [Revolution](#page-30-0) [Conclusions](#page-32-0)

メロトメ 倒 トメ ミトメ ミトリ (毛) $2QQ$

Permute the matrix rows/columns

First the green rows/columns, then the blue ones.

Universiteit Utrecht

Combinatorial problem: sparse matrix partitioning

Problem: Split the set of nonzeros A of the matrix into p subsets, $A_0, A_1, \ldots, A_{p-1}$, minimising the communication volume $V(A_0, A_1, \ldots, A_{p-1})$ under the load imbalance constraint

$$
nz(A_i)\leq \frac{nz(A)}{p}(1+\epsilon), \quad 0\leq i
$$

The maximum amount of work should not exceed the average amount by more than a fraction ϵ .

 $p = 2$ problem is already NP-complete (Lengauer 1990, circuit layout)

The hypergraph connection

Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors, black and white

Universiteit Utrecht

1D matrix partitioning using hypergraphs

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0) **[SBD](#page-23-0)** [Revolution](#page-30-0) [Conclusions](#page-32-0)

[Outline](#page-1-0)

- ► Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N}) \Rightarrow$ exact communication volume in sparse matrix–vector multiplication.
- \triangleright Columns \equiv Vertices: 0, 1, 2, 3, 4, 5, 6. Rows \equiv Hyperedges (nets, subsets of V):

$$
n_0 = \{1, 4, 6\}, \quad n_1 = \{0, 3, 6\}, \quad n_2 = \{4, 5, 6\},
$$

$$
n_3 = \{0, 2, 3\}, \quad n_4 = \{2, 3, 5\}, \quad n_5 = \{1, 4, 6\}.
$$

 \triangleright Cut nets n_1 n_1 , n_2 n_2 cause 1 horizontal communication. メロトメ団 トメミトメミト 一店 $2Q$

$(\lambda - 1)$ -metric for hypergraph partitioning

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0)

[2D](#page-15-0)

[Ordering](#page-23-0) **[SBD](#page-23-0)**

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

- 138×138 symmetric matrix bcsstk22, nz = 696, p = 8
- Reordered to Bordered Block Diagonal (BBD) form
- **If** Split of row *i* over λ_i processors causes

[a](#page-14-0) [c](#page-10-0)[o](#page-11-0)[m](#page-1-0)m[u](#page-22-0)[ni](#page-23-0)[ca](#page-0-0)[tio](#page-32-0)n volume of $\lambda_i - 1$ data words

Cut-net metric for hypergraph partitioning

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0)

[2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Row split has unit cost, irrespective of λ_i

Mondriaan 2D matrix partitioning

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0) **[SBD](#page-23-0)** [Revolution](#page-30-0) [Conclusions](#page-32-0)

[Outline](#page-1-0)

- \triangleright Block partitioning (without row/column permutations) of 59 \times 59 matrix impcol b with 312 nonzeros, for $p = 4$
- Mondriaan package v1.0 (May 2002). Originally developed by Vastenhouw and Bisseling for partitioning term-by-document matrices for a parallel web search machine.

Mondriaan 2D matrix partitioning

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

 $p = 4$, $\epsilon = 0.2$, global non-permuted view

Fine-grain 2D matrix partitioning

メロトメ 御 トメ 君 トメ 君 トッ

注

 299

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Each individual nonzero is a vertex in the hypergraph Catalyürek and Aykanat, 2001.

Mondriaan 2.0, Released July 14, 2008

- New algorithms for vector partitioning.
- Much faster, by a factor of 10 compared to version 1.0.
- 10% better quality of the matrix partitioning.
- Inclusion of fine-grain partitioning method
- Inclusion of hybrid between original Mondriaan and fine-grain methods.
- ► Can also handle $p \neq 2^q$.

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0)

[SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Matrix lns3937 (Navier–Stokes, fluid flow)

Splitting the sparse matrix lns3937 into 5 parts.

Universiteit Utrecht

Recursive, adaptive bipartitioning algorithm

K ロ > K @ ▶ K 할 > K 할 > (할) 900

MatrixPartition(A, p, ϵ) *input:* $p =$ number of processors, $p = 2^q$ $\epsilon =$ allowed load imbalance, $\epsilon > 0$. [Partitioning](#page-2-0) *output: p*-way partitioning of A with imbalance $\leq \epsilon$. if $p > 1$ then [Ordering](#page-23-0) $q := \log_2 p$; $(A_0^{\rm r},A_1^{\rm r}):=h(A,{\rm row},\epsilon/\mathfrak{q});$ hypergraph splitting [Revolution](#page-30-0) $(A_0^c, A_1^c) := h(A, \text{col}, \epsilon/q);$ [Conclusions](#page-32-0) $(A_0^f, A_1^f) := h(A, \text{fine}, \epsilon/q);$ $(A_0, A_1) := \text{best of } (A_0^{\text{r}}, A_1^{\text{r}}), (A_0^{\text{c}}, A_1^{\text{c}}), (A_0^{\text{f}}, A_1^{\text{f}});$ $maxnz := \frac{nz(A)}{n}$ $\frac{(\mathcal{A})}{p}(1+\epsilon);$ $\epsilon_0 := \frac{maxnz}{nz(A_0)} \cdot \frac{p}{2} - 1$; MatrixPartition $(A_0, p/2, \epsilon_0)$; $\epsilon_1 := \frac{\text{maxniz}}{\text{nz}(A_1)} \cdot \frac{p}{2} - 1$; MatrixPartition $(A_1, p/2, \epsilon_1)$; else output A;**Universiteit Utrecht**

21

[Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) $2D$

[SBD](#page-23-0)

Mondriaan version 1 vs. 3

[Outline](#page-1-0) [Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) **[Ordering](#page-23-0)** [SBD](#page-23-0) [Revolution](#page-30-0) [Conclusions](#page-32-0)

[M](#page-22-0)[o](#page-20-0)[n](#page-23-0)[dr](#page-22-0)[i](#page-14-0)[a](#page-22-0)an[,](#page-1-0) [d](#page-2-0)[e](#page-22-0)[f](#page-23-0)[aul](#page-0-0)[t v](#page-32-0)alues (v1 localbest, v3 hybrid), $\epsilon = 0.03$

Mondriaan 3.0 coming this month

- \triangleright Ordering to SBD and BBD structure: cut rows are placed in the middle, and at the end, respectively.
- \triangleright Visualisation through Matlab interface, MondriaanPlot, and MondriaanMovie
- \triangleright Metrics: $\lambda 1$ for parallelism, and cut-net for other applications
- \triangleright Library-callable, so you can link it to your own program
- Interface to PaToH hypergraph partitioner

Universiteit Utrecht

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0)

[SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Ordering a sparse matrix to improve cache use

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) **[SBD](#page-23-0)**

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

- \triangleright Compressed Row Storage (CRS, left) and zig-zag CRS (right) orderings.
- \triangleright Zig-zag CRS avoids unnecessary end-of-row jumps in cache, thus improving access to the input vector in a matrix–vector multiplication.
- ▶ Yzelman and Bisseling, SIAM Journal on Scientific Computing 2009.

Separated block-diagonal (SBD) structure

- \triangleright SBD structure is obtained by recursively partitioning the columns of a sparse matrix, each time moving the cut (mixed) rows to the middle. Columns are permuted accordingly.
- \triangleright Mondriaan is used in one-dimensional mode, splitting only in the column direction.
- \triangleright The cut rows are sparse and serve as a gentle transition between accesses to two different vector parts.

Universiteit Utrecht

Partition the columns till the end, $p = n = 59$

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

 \triangleright The recursive, fractal-like nature makes the ordering method work, irrespective of the actual cache characteristics (e.g. sizes of L1, L2, L3 cache). [T](#page-26-0)[h](#page-22-0)[e](#page-23-0)[o](#page-30-0)[rd](#page-22-0)e[r](#page-29-0)[i](#page-30-0)[ng](#page-0-0) [is](#page-32-0) cache-oblivious.

 \leftarrow \Box

Try to forget it all

- \triangleright Ordering the matrix in SBD format makes the matrix-vector multiplication cache-oblivious. Forget about the exact cache hierarchy. It will always work.
- \triangleright We also like to forget about the cores: core-oblivious. And then processor-oblivious, node-oblivious.
- \triangleright All that is needed is a good ordering of the rows and columns of the matrix, and subsequently of its nonzeros.

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Wall clock timings of SpMV on Huygens

Splitting into 1–20 parts

- Experiments on 1 core of the dual-core 4.7 GHz Power6+ processor of the Dutch national supercomputer Huygens.
- \triangleright 64 kB L1 cache, 4 MB L2, 32 MB L3.
- \blacktriangleright Test matrices: 1. stanford; 2. stanford_berkeley; 3. wikipedia-20051105; 4. cage14

Universiteit Utrecht

Doubly Separated Block-Diagonal structure

▶ 9 \times 9 chess-arrowhead matrix, $nz = 49$, $p = 2$, $\epsilon = 0.2$.

- \triangleright DSBD structure is obtained by recursively partitioning the sparse matrix, each time moving the cut rows and columns to the middle.
- \triangleright The nonzeros must also be reordered by a Z-like ordering.
- \triangleright Mondriaan is used in two-dimensional mode.

Screenshot of Matlab interface

Universiteit Utrecht

 \blacktriangleright Matrix rhpentium, split over 30 processors

つくい

K ロ ▶ K 百

Ŷ. \sim 重

Pictures of a revolution: the guillotine

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Outline](#page-1-0)

[Ordering](#page-23-0) [SBD](#page-23-0)

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

King Louis XVI of France executed at the Place de la Concorde in Paris, January 23, 1793. Source: http://www.solarnavigator.net/history/french_revolution.htm

The parallel computing revolution

[Outline](#page-1-0)

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0)

[Ordering](#page-23-0) **[SBD](#page-23-0)**

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

Intel Single-Chip Cloud computer with 48 cores, available Q3 2010. Energy consumption from 25 to 125 Watt, depending on use. Each pair of cores has a variable clock frequency. Source: http://techresearch.intel.com

Conclusions

- \triangleright Flop counts become less and less important.
- \triangleright It's all about restricting movement: moving less data, moving fewer electrons.
- \triangleright We have presented two combinatorial problems: partitioning and ordering. Solution of these is an enabling technology for high-performance computing.
- \triangleright Reordering is a promising method for oblivious computing. We have shown its utility in enhancing cache performance.
- \blacktriangleright Mondriaan 3.0, to be released soon, provides new reordering methods, based on hypergraph partitioning.
- \triangleright Visualisation can help in designing new algorithms!

[Partitioning](#page-2-0) [Matrix-vector](#page-4-0) [Movies](#page-8-0) [Hypergraphs](#page-11-0) [2D](#page-15-0) [Ordering](#page-23-0) **[SBD](#page-23-0)**

[Revolution](#page-30-0)

[Conclusions](#page-32-0)

