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introduction



Multifrontal QR

The Multifrontal QR method builds upon the equivalence between the
R factor and the Cholesky factor of ATA

From ATA = LLT to A = QR

Under the assumption that A is a Strong Hall matrix, L and R have
exactly the same structure.

A Multifrontal method can be used relying on the
elimination/assembly tree generated for the Cholesky factorization of
ATA
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Multifrontal QR

1. Analysis: symbolic computations to reduce fill-in, compute
elimination tree, symbolic factorization, estimates etc.

2. Factorization: compute the Q and R factors

3. Solve: use Q and R to compute the solution of a problem (e.g.
minx‖Ax − b‖2)
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• the tree is processed bottom-up

• a dense frontal matrix is associated to
each node

• at each node:

1. Assembly: the contribution blocks from
the children nodes are assembled into
the frontal matrix

2. Factorization: k eliminations are done
trough partial or full factorization of
the frontal matrix
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The Multifrontal QR: front factorization

Different approaches can be used for front factorization:

Full

Partial

Option 2 (Strategy 3 in Puglisi’s thesis) is the winner.
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The Multifrontal QR: front assembly

Things get complicated when we
look at all the fronts together.

1. contribution blocks are simply
appended at the bottom of the
father front

2. a row permutation must be
computed to restore a staircase
structure
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Multifrontal QR, parallelism



Parallelism

As for the Cholesky, LU, LDLT multifrontal method, two levels of
parallelism can be exploited:

• Tree Parallelism: fronts associated to nodes in
different branches are independent and can,
thus, be factorized in parallel

• Front Parallelism: if the size of a front is big
enough, the front can be factorized in parallel
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Parallelism: classical approach

The classical approach (Puglisi, Matstom, Davis)

• Tree parallelism:
◦ a front assembly+factorization corresponds to a task
◦ computational tasks are added to a task pool
◦ threads fetch tasks from the pool repeatedly until all the fronts are

done

• Node parallelism:
◦ Multithreaded BLAS for the front facto

What’s wrong with this approach? A complete separation of the two
levels of parallelism which causes

• potentially strong load unbalance

• heavy synchronizations due to the sequential nature of some
operations (assembly)

• sub-optimal exploitation of the concurrency in the multifrontal
method9/26 June 2010, Aussois



Parallelism: classical approach

Node parallelism grows towards the root

Tree parallelism grows towards the leaves
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Parallelism: a new approach

fine-grained, data-flow parallel approach

• fine granularity: tasks are not defined as operations
on fronts but as operations on portions of fronts
defined by a 1-D partitioning

• data flow parallelism: tasks are scheduled
dynamically based on the dependencies between
them

Both node and tree parallelism are handled the same way at any level
of the tree.
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Parallelism: a new approach

Fine-granularity is achieved through a 1-D block partitioning of fronts
and the definition of five elementary operations:

1. activate(front): the activation of a front
corresponds to a full determination of its
(staircase) structure and allocation of the
needed memory areas

2. panel(bcol): QR factorization (Level2
BLAS) of a column

3. update(bcol): update of a column in the
trailing submatrix wrt to a panel

4. assemble(bcol): assembly of a column of
the contribution block into the father

5. clean(front): cleanup the front in order to
release all the memory areas that are no more
needed
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Parallelism: a new approach

How do we handle all this complexity?

Data-flow programming model [Silc et al. 97]

An instruction is said to be executable when all the input operands
that are necessary for its execution are available to it. The instruction
for which this condition is satisfied is said to be fired. The effect of
Firing an instruction is the consumption of its input values and
generation of output values.

13/26 June 2010, Aussois



Parallelism: a new approach

• a frontal matrix is 1-D partitioned into
block-columns

• panels are factorized as usual

• updates can be applied to each column
separately

• Firing rule #1: a panel can be factorized as
soon as it is updated wrt the previous step
(lookahead). Early panel factorizations results
in more updates in a “ready” state and, thus,
more parallelism

• Firing rule #2: a column can be updated wrt
a panel if it is up to date wrt all previous
panels
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Parallelism: a new approach

A look at the whole tree:

• fronts must be activated: the structure
is computed and memory is allocated

• Firing rule #3: a node can be
activated only if all of its children are
already active

• Firing rule #4: a column can be
assembled into the father, if it is
up-to-date wrt all the preceding panels
and the father is active

• Firing rule #5: a column can be
treated if it is fully assembled
regardless of the status of the rest of
the tree
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Parallelism: the DAG-tree

Data-flow programming model [Silc et al. 97]

As a result, a dataflow program can be represented as a directed
graph consisting of named nodes, which represent instructions, and
arcs, which represent data dependencies among instructions.
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Parallelism: scheduling

exec loop
do

call get task()

select case(task_type)

case (0)

exit

case (1)

call do activate(...)

case (2)

call do panel(...)

case (3)

call do update(...)

case (4)

call do assemble(...)

case (5)

call do clean(...)

end select

end do

Data-flow programming

model [Silc et al. 97]

Due to the above rule the model is
asynchronous. It is also
self-scheduling since instruction
sequencing is constrained only by
data dependencies.
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Parallelism: scheduling

get task
do

do f=1, num_fronts

if (f is active) then

call get_panel() ! set task_type=2

call get_update() ! set task_type=3

call get_assemble() ! set task_type=4

else if (f is activable) then

task_type=1

else if (f is done) then

task_type=5

end if

end do

if (factorization done) task_type=0

if (found task) exit

end do
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Parallelism: results
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Parallelism: results
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Parallelism: results
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Parallelism: results
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QR-MUMPS



QR-MUMPS features

Done!

COLAMD Ordering, Symbolic
Factorization, OpenMP factorization,

Singletons Detection, Amalgamation, Fortran 95/2003
software infrastructure, stackless memory management, multiple

precisions
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QR-MUMPS features

TODO

Solution, Rank Revealing, MPI tree
parallelism, MPI front parallelism, reorder

tree, front-to-processor mapping, memory
consumption minimization, more ordering methods,
splitting, in-place assembly flops/memory estimates, matlab

interface,out-of-core, numerical preprocessing, C interface, blocking optimality,

low-rank approximations, 2-D OpenMP parallelism, memory affinity, scheduling policies, parallel

analysis, partial QR, incomplete QR
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The end

do

write(*,’("Questions?")’)

if (question) then

if(have_answer) then

call give_answer()

else

call pretend_the_question_is_ill_posed()

end if

else

write(*,’("Thanks!")’)

exit

end if

end do
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