Bounded Multi Port Model: Motivations, Feasability & Application to Broadcast

Olivier Beaumont, Lionel Eyraud-Dubois, Shailesh Kumar Agrawal, Hejer Rejeb

Cepage team, LaBRI, Bordeaux, France

Scheduling in Aussois June 2010

K ロ K K @ K K X B K X B K C B

 $2Q$

Outline

- **[TCP Bandwidth Sharing](#page-5-0)**
- **[Broadcast with Bounded Degree](#page-17-0)**

[Conclusions](#page-45-0)

重

Introduction

Introduction

Scheduling: what is a good model for communications ?

- **Standard communication model: One-Port Model**
	- \blacktriangleright a node is involved in at most one communication at the same time \triangleright corresponds well to old MPI implementations
- Problem: if the network is strongly heterogeneous, then the bandwidth of the server may be wasted
	- Imagine a server with $1GB/sec$ bandwidth sending $10MB$ to a client with 1MB/sec download bandwidth
	- It is not realistic to assume that the server will be busy for 10 secs
- In the context of large scale distributed and strongly heterogeneous platforms, one port model is not the right model

- ④ ラ ス ヨ メ ス ヨ メ

Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound (both upload and download)
- **o** Internet-like: no contention inside the network

 Ω

Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound (both upload and download)
- **•** Internet-like: no contention inside the network

- In this talk, we will see:
	- \triangleright A model for TCP bandwidth sharing
	- \blacktriangleright Its influence on several scheduling problems
	- \triangleright A particular study of the broadcast operation

 Ω

Outline

- 2 [TCP Bandwidth Sharing](#page-5-0)
	- [Model](#page-6-0)
	- [Influence on Scheduling Algorithms](#page-8-0)

[Broadcast with Bounded Degree](#page-17-0)

[Conclusions](#page-45-0)

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B}$

 -10.5

 299

目

Why is it important ?

- Experiments using French Grid G5K
- The master has N threads, each sending data to N node

Experiment 1: master in Bordeaux, 1 client in Bordeaux (in a different cluster), 1 client in Nancy

Experiment 2: the same, except that the incoming bandwidth of the client in Nancy is twice smaller.

Modeling TCP Bandwidth Sharing

- Increase TCP window sizes until congestion
- **TCP** window increases quickly for nodes closer to the master
- $\bullet \Rightarrow$ closer nodes get higher bandwidth
- Max-Min Fairness algorithm

Model: Casanova and Marchal

Let b_i denote the achievable bandwidth between M and P_i (if alone) Let λ_i denote the inverse of the RTT between M and P_i

• If
$$
\sum b_i \leq B
$$
, then $all(P_i) = b_i$

Else

While
$$
\exists i, b_i \leq \frac{\lambda_i B}{\sum \lambda_k}
$$
: $all(P_i) = b_i$ and update $B \leftarrow B - b_i$
\n $\forall i$ s.t. $b_i > \frac{\lambda_i B}{\sum \lambda_k}$: set $all(P_i) = \frac{\lambda_i B}{\sum \lambda_k}$.

Note that $\sum \text{all}(P_i) = \min(B, \sum b_i)$.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

An Upper Bound on Performance Degradation

- \bullet We consider a set of simultaneous communications between M and the P_i s.
- Each communication has a release date r_i and starts immediately.

Lemma

If
$$
\sum
$$
 all $(P_i) \leq B$, then $\forall i$, all $(P_i) > 0 \Rightarrow all(P_i) = b_i$.

Theorem

The makespan obtained when relying on TCP Bandwidth Sharing mechanism can be at most twice the optimal makespan

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

An Upper Bound on Performance Degradation

Proof.

• Same as Graham's proof... Consider P_{LAST} , whose last communication ends at T

• Partition
$$
T - r_{\text{LAST}}
$$
 into

 T_1 instants when all bandwidth B is used, and T_2 the rest

- Then, if T_{OPT} denotes the optimal makespan \triangleright T_1 \leq T_{OPT} (nothing is wasted during T_1) $T_1 + T_2 + r_{\text{LAST}} \leq T_{\text{OPT}}$ (P_{LAST} communicates at maximal rate during T_2)
- Therefore, $T = r_{\text{LAST}} + T_1 + T_2 \leq 2T_{\text{OPT}}$.

The above bound is tight

Let us consider the following platform

- If we rely on TCP bandwidth mechanism, then P_1 gets too much bandwidth: $1-\epsilon^2$ instead of $1-\epsilon$
- and it takes almost 1 time unit to finish the transfer with P_2
- If we enforce the bandwidth with P_1 to be at most 1ϵ , both transfers end up in time $1 + \epsilon$
- The ratio between both solutions is $2 3\epsilon$ [.](#page-9-0)

Steady State Scheduling of Independent Tasks

- b_{i} : number of tasks that can be sent to P_{i} in one time unit
- w_i : number of tasks that can be processed by P_i in one time unit
- Goal: Maximize the number of tasks that can be processed in steady state by the platform

 Ω

Scheduling of Independent Tasks: Optimal Solution

- Let n_i denote the number of tasks processed by P_i
- Clearly, $n_i \leq b_i$, $n_i \leq w_i$ and $n_i \leq B$.
- Let us denote by $c_i = \min(b_i, w_i)$ and $C = \sum c_i$

Optimal Solution

$$
\bullet \ \ \text{If} \ \ C \leq B, \ \text{then set} \ \forall i, \quad n_i = c_i
$$

• Else set
$$
\forall i, \quad n_i = c_i \frac{B}{C}
$$
.

 $\alpha \curvearrowright$

Scheduling of Independent Tasks: Optimal Algorithm

Implementation 1

In order to avoid starvation, each slave node starts with two tasks in its local buffer. Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately with bandwidth rate $n_i.$

Proof.

- \bullet The bandwidth requested at master node is never larger than B since $\sum n_i \leq B$
- It takes $1/n_i$ time units to P_i to receive a task, and it takes at most $1/n_i$ time units to process it.
- Thus, the processing rate at P_i is exactly n_i .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Scheduling of Independent Tasks: Upper Bound

Implementation 1

Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately with bandwidth rate n_i .

Implementation 2

Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately.

Theorem

The waste W experienced by Implementation 2 per unit time is bounded by $W \leq \frac{1}{4} B$, and hence its throughput verifies $T_2 \geq \frac{3}{4}$ $\frac{3}{4}T_1$

K ロ ト K 何 ト K ヨ ト K ヨ ト

The bound is tight

- 2 slave processors
	- \blacktriangleright $P_1: w_1 = 1, b_1 = 2, RTT = \epsilon^2$
	- P_2 : $w_2 = 1$, $b_2 = 1$, RTT = ϵ
- The ratio between both implementations is $\frac{4}{3}$

2 tasks every 2 time units

3 tasks every 4 time units 4 D F

- ④ ラ ス ヨ メ ス ヨ メ

Summary of first part

- Multiport model is more realistic than 1-port model
- **TCP Bandwidth sharing mechanism**
	- \blacktriangleright is complicated
	- \triangleright and strongly depends on RTT values.
- On the other hand,
	- \triangleright we usually know what bandwidth should be allocated
	- \triangleright and many mechanisms exist to limit the bandwidth of a connexion
- So, use them!

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

Outline

[Introduction](#page-1-0)

[TCP Bandwidth Sharing](#page-5-0)

3 [Broadcast with Bounded Degree](#page-17-0)

- [Problem and Complexity](#page-18-0)
- **•** [Algorithms](#page-27-0)
- **•** [Evaluation](#page-41-0)

[Conclusions](#page-45-0)

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B}$

 -10.5

Introduction

From now on: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint

 Ω

Introduction

From now on: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint

 Ω

Best tree: $T = 1$

イロメ イ部メ イ君メ イ君メー

重

Best DAG: $T = 1.5$

 \leftarrow \Box

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

重

Optimal: $T = 2$

 \leftarrow \Box

 $\mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$

重

Precise model

An instance

- *n* nodes, with output bandwidth b_i and maximal out-degree d_i
- node \mathcal{N}_0 is the master node that holds the data

A solution (Flows)

• Flow
$$
f_j^i
$$
 from node \mathcal{N}_j to \mathcal{N}_i

$$
\bullet \ \forall j, \quad \left| \left\{ i, \ f^{i}_{j} > 0 \right\} \right| \leq d_{j}
$$

 $\forall j, \quad \sum_i f_j^i$

degree constraint at \mathcal{N}_i

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

capacity constraint at \mathcal{N}_i

• Maximize $T = \min_j \text{mincut}(\mathcal{N}_0, \mathcal{N}_j)$

 $+$

Complexity

3-Partition

- $3p$ integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$

 -10.5

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 299

目

Complexity

3-Partition

- $3p$ integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$

Reduction

- p "server" nodes, $b_i = 2T$ and $d_i = 4$
- 3p "client" nodes, $b_{i+p} = T a_i$ and $d_{i+p} = 1$
- 1 "terminal" node, $b_{4p} = 0$, $d_{4p} = 0$

 -100

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Upper bound

If S has throughput T

- Node \mathcal{N}_i uses at most $X_i = \min(b_i, T d_i)$
- \bullet Total received rate: nT

• Thus
$$
\sum_{i=0}^{n} \min(b_i, T d_i) \ge n
$$

 \bullet Of course, $T \leq b_0$

Our algorithms

- Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)

メ都 トメミト メミト

Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 > X_2 > \cdots > X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

 $A \oplus A \oplus A \oplus A \oplus A \oplus A \oplus B$

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

 $\left\{ \frac{1}{10} \right\}$ and $\left\{ \frac{1}{2} \right\}$ and $\left\{ \frac{1}{2} \right\}$

 QQ

目

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 > X_2 > \cdots > X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

 QQ

目

Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 > X_2 > \cdots > X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

 QQ

E

Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, T d_i) \geq nT$

- Order nodes by capacity : $X_1 > X_2 > \cdots > X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Provides a valid solution

- \bullet $b_0 > T$
- Sort by $X_i \implies \forall k, \sum_{i=0}^k X_i \geq (k+1)T$
- Since $X_k \le T d_k$ $X_k \le T d_k$ $X_k \le T d_k$, the outdegree of \mathcal{N}_k is at most $d_k + 1$

 $Q \cap$

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \geq nT$

Start with $\rm ACYCLIC$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

K ロンス (部) > ス 급 > ス 급 > 1 급

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \geq nT$

Start with $\rm ACYCLIC$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

K ロンス (部) > ス 급 > ス 급 > 1 급

Start with $\rm ACYCLIC$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐

Start with $\rm ACYCLIC$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 一重

Start with $\rm ACYCLIC$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 一重

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \geq nT$

- Start with ACYCLIC, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0 + 1)T$
- Succesively build partial solutions in which
	- All nodes up to \mathcal{N}_k are served
	- Only node \mathcal{N}_k has remaining bandwidth
- Use the source and \mathcal{N}_{k_0-1} to serve \mathcal{N}_{k_0} and \mathcal{N}_{k_0+1}
- Then for all k, \mathcal{N}_{k+1} is served by \mathcal{N}_k and \mathcal{N}_{k-1}

- ④ 骨 ト ④ 手 ト ④ 手 ト

 Ω

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \geq nT$

- Start with ACYCLIC, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0 + 1)T$
- **•** Succesively build partial solutions in which
	- All nodes up to \mathcal{N}_k are served
	- Only node \mathcal{N}_k has remaining bandwidth
- Use the source and \mathcal{N}_{k_0-1} to serve \mathcal{N}_{k_0} and \mathcal{N}_{k_0+1}
- Then for all k , \mathcal{N}_{k+1} is served by \mathcal{N}_k and \mathcal{N}_{k-1}

Final outdegree of \mathcal{N}_i : $o_i \leq \max(d_i + 2, 4)$

- Acyclic solution: $o_i \leq d_i + 1$
- Degree of the source and of \mathcal{N}_{k_0-1} is increased by 1
- \mathcal{N}_k \mathcal{N}_k has edges to \mathcal{N}_{k-2} , \mathcal{N}_{k-1} , \mathcal{N}_{k+1} and \mathcal{N}_{k+2} \mathcal{N}_{k+2} \mathcal{N}_{k+2} .

Comparison of different solutions

Unconstrained solution

Best achievable throughput without degree constraints: $\frac{\sum_i b_i}{n}$

Best Tree

In a tree of throughput T, flow through all edges must be T. Counting the edges yield $\sum_i \min(d_i, \left\lfloor\frac{b_i}{T}\right\rfloor) \geq n.$

Best Acyclic

Computed by the ACYCLIC algorithm

Cyclic

Throughput when adding cycles

L. Eyraud-Dubois (LaBRI, Bordeaux) [Bounded Multi Port Model](#page-0-0) 25/ 31

4. 0. 3

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

n

目

Experimental setting

Random instance generation

- Outgoing bandwidths generated from the data of XtremLab project
- Nodes degrees are homogeneous

Results: comparisons to Cyclic

目

Results: Cyclic vs Unconstrained

Þ

Outline

- **[TCP Bandwidth Sharing](#page-5-0)**
- **[Broadcast with Bounded Degree](#page-17-0)**

イロト イ部 トイ君 トイ君 ト

Summary of first part

- Multiport model is more realistic than 1-port model
- **TCP Bandwidth sharing mechanism**
	- \blacktriangleright is complicated
	- \triangleright and strongly depends on RTT values.
- On the other hand,
	- \triangleright we usually know what bandwidth should be allocated
	- \triangleright and many mechanisms exist to limit the bandwidth of a connexion
- So, use them!

 $A \cap B \rightarrow A \Rightarrow A \Rightarrow B \rightarrow A$

Summary of second part

- Theoretical study of the broadcast problem:
	- optimal resource augmentation algorithm
- In practice:
	- a low degree is enough to reach a high throughput
	- an acyclic solution is very reasonable
	- once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of ACYCLIC?
- Study the robustness of our algorithms
- Design on-line and/or distributed versions

 $A \oplus A \oplus A \oplus A$