Bounded Multi Port Model: Motivations, Feasability & Application to Broadcast

Olivier Beaumont, **Lionel Eyraud-Dubois**, Shailesh Kumar Agrawal, Hejer Rejeb

Cepage team, LaBRI, Bordeaux, France

Scheduling in Aussois June 2010

◆□> <@> < E> < E> < E</p>

Outline

Introduction

Introduction

Scheduling: what is a good model for communications ?

- Standard communication model: One-Port Model
 - a node is involved in at most one communication at the same timecorresponds well to old MPI implementations
- Problem: if the network is strongly heterogeneous, then the bandwidth of the server may be wasted
 - Imagine a server with 1GB/sec bandwidth sending 10MB to a client with 1MB/sec download bandwidth
 - It is not realistic to assume that the server will be busy for 10 secs
- In the context of large scale distributed and strongly heterogeneous platforms, one port model is not the right model

・ロト ・同ト ・ヨト ・ヨト

Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound (both upload and download)
- Internet-like: no contention inside the network

L. Eyraud-Dubois	(LaBRI, Bordeaux)
------------------	-------------------

Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound (both upload and download)
- Internet-like: no contention inside the network

- In this talk, we will see:
 - A model for TCP bandwidth sharing
 - Its influence on several scheduling problems
 - A particular study of the broadcast operation

Outline

Introduction

- 2 TCP Bandwidth Sharing
 - Model
 - Influence on Scheduling Algorithms

3 Broadcast with Bounded Degree

4 Conclusions

4 E b

3. 3

Model

Why is it important?

- Experiments using French Grid G5K
- The master has N threads, each sending data to N node

Experiment 1: master in Bordeaux, 1 client in Bordeaux (in a different cluster), 1 client in Nancy

Experiment 2: the same, except that the incoming bandwidth of the client in Nancy is twice smaller.

Modeling TCP Bandwidth Sharing

- Increase TCP window sizes until congestion
- TCP window increases quickly for nodes closer to the master
- $\bullet \ \Rightarrow \ {\rm closer} \ {\rm nodes} \ {\rm get} \ {\rm higher} \ {\rm bandwidth}$
- Max-Min Fairness algorithm

Model: Casanova and Marchal

Let b_i denote the achievable bandwidth between M and P_i (if alone) Let λ_i denote the inverse of the RTT between M and P_i

• If
$$\sum b_i \leq B$$
, then $all(P_i) = b_i$

Else

While
$$\exists i, b_i \leq \frac{\lambda_i B}{\sum \lambda_k}$$
: $all(P_i) = b_i$ and update $B \leftarrow B - b_i$
 $\forall i \text{ s.t. } b_i > \frac{\lambda_i B}{\sum \lambda_k}$: set $all(P_i) = \frac{\lambda_i B}{\sum \lambda_k}$.

Note that $\sum all(P_i) = \min(B, \sum b_i)$.

(a)

An Upper Bound on Performance Degradation

- We consider a set of simultaneous communications between ${\cal M}$ and the ${\cal P}_i {\rm s.}$
- Each communication has a release date r_i and starts immediately.

Lemma

If
$$\sum all(P_i) \leq B$$
, then $\forall i, all(P_i) > 0 \Rightarrow all(P_i) = b_i$.

Theorem

The makespan obtained when relying on TCP Bandwidth Sharing mechanism can be at most twice the optimal makespan

- 4 同 6 4 日 6 4 日 6

An Upper Bound on Performance Degradation

Proof.

 \bullet Same as Graham's proof... Consider $P_{\rm LAST}$, whose last communication ends at T

• Partition
$$T - r_{\text{LAST}}$$
 into

 T_1 instants when all bandwidth B is used, and T_2 the rest

• Then, if T_{OPT} denotes the optimal makespan

• $T_1 \leq T_{\text{OPT}}$ (nothing is wasted during T_1)

 $T_2 + r_{\text{LAST}} \leq T_{\text{OPT}} (P_{\text{LAST}} \text{ communicates at maximal rate during } T_2)$

• Therefore, $T = r_{\text{LAST}} + T_1 + T_2 \le 2T_{\text{OPT}}$.

The above bound is tight

Let us consider the following platform

- If we rely on TCP bandwidth mechanism, then P_1 gets too much bandwidth: $1-\epsilon^2$ instead of $1-\epsilon$
- ullet and it takes almost 1 time unit to finish the transfer with P_2
- If we enforce the bandwidth with P_1 to be at most $1-\epsilon$, both transfers end up in time $1+\epsilon$
- The ratio between both solutions is $2 3\epsilon_{\cdot,\cdot}$

L. Eyraud-Dubois (LaBRI, Bordeaux)

10/31

Steady State Scheduling of Independent Tasks

- b_i : number of tasks that can be sent to P_i in one time unit
- w_i : number of tasks that can be processed by P_i in one time unit
- Goal: Maximize the number of tasks that can be processed in steady state by the platform

Scheduling of Independent Tasks: Optimal Solution

- Let n_i denote the number of tasks processed by P_i
- Clearly, $n_i < b_i$, $n_i < w_i$ and $n_i < B$.
- Let us denote by $c_i = \min(b_i, w_i)$ and $C = \sum c_i$

Optimal Solution

• If C < B, then set $\forall i, n_i = c_i$

• Else set
$$\forall i, n_i = c_i \frac{B}{C}$$
.

Scheduling of Independent Tasks: Optimal Algorithm

Implementation 1

In order to avoid starvation, each slave node starts with two tasks in its local buffer. Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately with bandwidth rate n_i .

Proof.

- The bandwidth requested at master node is never larger than Bsince $\sum n_i \leq B$
- It takes $1/n_i$ time units to P_i to receive a task, and it takes at most $1/n_i$ time units to process it.
- Thus, the processing rate at P_i is exactly n_i .

(日) (同) (三) (三)

Scheduling of Independent Tasks: Upper Bound

Implementation 1

Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately with bandwidth rate n_i .

Implementation 2

Each time P_i starts processing a new task, it asks for another task and the master node initiates the communication immediately.

Theorem

The waste W experienced by Implementation 2 per unit time is bounded by $W \leq \frac{1}{4}B$, and hence its throughput verifies $T_2 \geq \frac{3}{4}T_1$

The bound is tight

- 2 slave processors
 - P_1 : $w_1 = 1$, $b_1 = 2$, RTT = ϵ^2
 - P_2 : $w_2 = 1$, $b_2 = 1$, $RTT = \epsilon$
- The ratio between both implementations is $\frac{4}{3}$

2 tasks every 2 time units

Using Implementation 2

3 tasks every 4 time units

- 4 週 ト - 4 三 ト - 4 三 ト

Summary of first part

- Multiport model is more realistic than 1-port model
- TCP Bandwidth sharing mechanism
 - is complicated
 - and strongly depends on RTT values.
- On the other hand,
 - we usually know what bandwidth should be allocated
 - and many mechanisms exist to limit the bandwidth of a connexion
- So, use them!

- 4 週 ト - 4 三 ト - 4 三 ト

Outline

3 Broadcast with Bounded Degree

- Problem and Complexity
- Algorithms
- Evaluation

A T >>

3 17/31

.∃ →

Introduction

From now on: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint

18/31

Introduction

From now on: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint

18/31

	< □ > < @ > < ≧ >	(≣) (≣)	୬୯୯
L. Eyraud-Dubois (LaBRI, Bordeaux)	Bounded Multi Port Model	19/ 31	

Best tree: T = 1

L. Eyraud-Dubois (LaBRI, Bordeaux)	Bounded Multi Port Model	19/ 31
------------------------------------	--------------------------	--------

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

Best DAG: T = 1.5

L. Eyraud-Dubois (LaBRI, Bordeaux) Bounded Multi Port Model 19/31	L. Eyraud-Dubois (LaBRI, Bordeaux)	Bounded Multi Port Model	19/ 31	
---	------------------------------------	--------------------------	--------	--

◆□> ◆圖> ◆臣> ◆臣> 三臣

Optimal: T = 2

L. Eyraud-Dubois	(LaBRI, Bordeaux)	
------------------	-------------------	--

Precise model

An instance

- n nodes, with output bandwidth b_i and maximal out-degree d_i
- node \mathcal{N}_0 is the master node that holds the data

A solution (Flows)

• Flow
$$f_j^i$$
 from node \mathcal{N}_j to \mathcal{N}_i

•
$$\forall j, \quad \left| \left\{ i, f_j^i > 0 \right\} \right| \le d_j$$

•
$$\forall j, \quad \sum_i f_j^i \le b_j$$

degree constraint at \mathcal{N}_i

(4回) (日) (日)

capacity constraint at \mathcal{N}_i

• Maximize $T = \min_{i} \operatorname{mincut}(\mathcal{N}_{0}, \mathcal{N}_{i})$

Complexity

3-Partition

- 3p integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i\in S_l}a_i=T$

- 4 回 ト 4 三 ト 4 三 ト

Problem and Complexity

Complexity

3-Partition

- 3p integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_i} a_i = T$

Reduction

- p "server" nodes, $b_i = 2T$ and $d_i = 4$
- 3p "client" nodes, $b_{i+p} = T a_i$ and $d_{i+p} = 1$

• 1 "terminal" node,
$$b_{4p} = 0$$
, $d_{4p} = 0$

A B A A B A

э

Upper bound

If ${\mathcal S}$ has throughput T

- Node \mathcal{N}_i uses at most $X_i = \min(b_i, Td_i)$
- Total received rate: nT

• Thus
$$\sum_{i=0}^{n} \min(b_i, Td_i) \ge nT$$

• Of course, $T \leq b_0$

Our algorithms

- \bullet Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)

22/31

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

L. Eyraud-Dubois (LaBRI, Bordeaux)	Bounded Multi Port Model
------------------------------------	--------------------------

(日) (周) (三) (三)

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

(日) (周) (三) (三)

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

L. Eyraud-Dubois	(LaBRI,	Bordeaux)		Bo
------------------	---------	-----------	--	----

・ 同 ト ・ ヨ ト ・ ヨ ト …

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

L. Eyraud-Dubois (LaBRI, Bordeaux)	Bounded Multi Port Model
------------------------------------	--------------------------

A B F A B F

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Provides a valid solution

- $b_0 \ge T$
- Sort by $X_i \implies \forall k, \sum_{i=0}^k X_i \ge (k+1)T$
- Since $X_k \leq Td_k$, the outdegree of \mathcal{N}_k is at most $d_k + 1$

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \ge nT$

• Start with $\operatorname{ACYCLIC}$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

L. Eyraud-Dubois	(LaBRI,	Bordeaux))
------------------	---------	-----------	---

Broadcast with Bounded Degree Algorithms

General case: $\sum_{i=0}^{n} X_i \ge nT$

• Start with $\operatorname{ACYCLIC}$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

L. Eyraud-Dubois	(LaBRI,	Bordeaux))
------------------	---------	-----------	---

• Start with $\operatorname{ACYCLIC}$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

L. Eyraud-Dubois	(LaBRI,	Bordeaux)
------------------	---------	----------	---

• Start with $\operatorname{ACYCLIC}$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

イロト イポト イヨト イヨト 三日

• Start with $\operatorname{ACYCLIC}$, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$

イロト イポト イヨト イヨト 三日

Broadcast with Bounded Degree

Algorithms

General case: $\sum_{i=0}^{n} X_i \ge nT$

- Start with ACYCLIC, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$
- Succesively build partial solutions in which
 - All nodes up to \mathcal{N}_k are served
 - Only node \mathcal{N}_k has remaining bandwidth
- Use the source and \mathcal{N}_{k_0-1} to serve \mathcal{N}_{k_0} and \mathcal{N}_{k_0+1}
- Then for all k, \mathcal{N}_{k+1} is served by \mathcal{N}_k and \mathcal{N}_{k-1}

Broadcast with Bounded Degree

Algorithms

General case: $\sum_{i=0}^{n} X_i \ge nT$

- Start with ACYCLIC, until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$
- Succesively build partial solutions in which
 - All nodes up to \mathcal{N}_k are served
 - Only node \mathcal{N}_k has remaining bandwidth
- Use the source and \mathcal{N}_{k_0-1} to serve \mathcal{N}_{k_0} and \mathcal{N}_{k_0+1}
- Then for all k, \mathcal{N}_{k+1} is served by \mathcal{N}_k and \mathcal{N}_{k-1}

Final outdegree of \mathcal{N}_i : $o_i \leq \max(d_i + 2, 4)$

- Acyclic solution: $o_i \leq d_i + 1$
- Degree of the source and of \mathcal{N}_{k_0-1} is increased by 1
- \mathcal{N}_k has edges to \mathcal{N}_{k-2} , \mathcal{N}_{k-1} , \mathcal{N}_{k+1} and \mathcal{N}_{k+2} .

Comparison of different solutions

Unconstrained solution

Best achievable throughput without degree constraints: \ge

$$\frac{\sum_i b_i}{n}$$

Best Tree

In a tree of throughput T, flow through all edges must be T. Counting the edges yield $\sum_i \min(d_i, \left\lfloor \frac{b_i}{T} \right\rfloor) \geq n.$

Best Acyclic

Computed by the $\operatorname{ACYCLIC}$ algorithm

Cyclic

Throughput when adding cycles

L. Eyraud-Dubois (LaBRI, Bordeaux)

Bounded Multi Port Model 2

25/31

Experimental setting

Random instance generation

- Outgoing bandwidths generated from the data of XtremLab project
- Nodes degrees are homogeneous

Results: comparisons to Cyclic

74 N - ∢ ≣ →

Results: Cyclic vs Unconstrained

28/31

Outline

Summary of first part

- Multiport model is more realistic than 1-port model
- TCP Bandwidth sharing mechanism
 - is complicated
 - and strongly depends on RTT values.
- On the other hand,
 - we usually know what bandwidth should be allocated
 - and many mechanisms exist to limit the bandwidth of a connexion
- So, use them!

- 4 週 ト - 4 三 ト - 4 三 ト

Summary of second part

- Theoretical study of the broadcast problem:
 - optimal resource augmentation algorithm
- In practice:
 - a low degree is enough to reach a high throughput
 - an acyclic solution is very reasonable
 - once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of ACYCLIC ?
- Study the robustness of our algorithms
- Design on-line and/or distributed versions

(日)