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The Problem

v

Several bag-of-tasks applications
(Each application is a collection of similar tasks)

v

A master-worker platform

v

Objective: maximizing the throughput

v

Bad news: a bag is made of similar but not identical tasks
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Presentation outline

Offline Case: ldentical Tasks

Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations
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Notation

v

A master Py which has an output bandwidth of
bwg

v

n workers: Pq, ..., P,

v

Processor P; has

» a speed of s;
» an input bandwidth of bw;

v

m bag-of-tasks applications
Tasks of bag k have

» a volume of computation of Vi omp(k)
» a volume of communication of Vomm(k)

v

» Communication model:
bounded multi-port with linear communication
times
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Constraints

1. Cumulative throughput of Tj:

=3

1<i<n

2. Throughput of T, proportional to its priority:

#

Tk 1

Objective

Maxmvize  pt)
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Constraints (continued)

3. Constraint on computation capabilities of worker P;

Z pgk) Vcom{J(k) < 1
1<k<m Si

4. Constraint on communication capabilities of worker P;

Vcomm k
3 Veommlh)
bw;
1<k<m

5. Constraint on communication capabilities of the master

VCOmm k
>3 At <

1<i<n 1<k<m
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Complete Linear Program

MAXIMIZE p(l) UNDER THE CONSTRAINTS
Vk € []'7 m]7 Z pfk) = p(k)
1<i<n
(k) (1)
Vke[l,m, Z2=1"
Tk T
) Veomp (k)
Vie [17 n]7 Z Pfk)% <1
1<k<m Si
Veomm(k
Vie [17 n]7 Z pfk)b() <1
1<k<m Wi
Z Z comm ) < 1
bwg

1<i<n1<k<m
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Notation

v

A master Py which has an output bandwidth of bwg

v

n workers: Py, ..., P,

v

Processor P; has

» a speed of s;
» an input bandwidth of bw;

v

m bag-of-tasks applications

Tasks of bag k have

k) . .
> C(on’m, is a random variable :
k

the u-th instance has a communication volume of Xc(omm(u)
min®) < x&., (u) < max

comm —

v

> XC(O,)np is a random variable
the u-th instance has a computation volume of Xc(g,qu(u)
mm(coznp < XC(OI)np( ) < maX(chp
» Communication model:
bounded multi-port with linear communications times
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An c-approximation scheme

Underlying principle: split each application into several virtual
applications in which two instances only have small differences in
term of communication and computation volumes.

Communication volume

@ Instances of T;

Instances of T,

% OO : : @ Instances of T,
@ ' '

0 Computation volume
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Formal splitting

(2
19 = (14 £)7 minlehp, with 0 < g < QW) = 14 | 7reeme/

(k)
| maXcomm
o) = (1 + &) minlghm, with 0 < r < RK =1+ lW‘

Instance u of Ty belongs to I(Sk,) = {%(]k) ’y((,}jr)l} {(5(/() 65{?1] if
> 15 < XEho(u) <41, and
> 51 < Xom(u) < 8%,
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Virtual applications

(k)

» Instances of Ty in I, define virtual application Ty g,

> pglfr) probability of an instance of T to belong to virtual
application Ty g ,:

A= (20 < X8y <00 < X < 15

vk, qu,—

> p,(.’kq)’r: contribution of processor P; to the throughput of
virtual application Ty 4,

» Throughput of virtual application Ty , . is related to the
throughput of Tj:

vk, ¥ < QW vr < RIS plk) = 5050
1<i<n
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Transposing the constraints

» Throughput of Ty is still proportional to its priority:

(k) (1)
Vke[t,m], 2l =2~
1
» Constraint on computation capabilities of worker P;
Problem: We do not know the execution time of instances
We (conservatively) over-approximate them

(k)
Vi€ [1,n], Z Z (Iqry:irl>§1

k=1 q<Q
r<R()

13/26



Transposing the constraints (cont.)

» Constraint on communication capabilities of worker P;

50
V1</<nz > (,q’ ’“)gl

k=1 q<Q(’<
r<R(K)

» Constraint on communication capabilities of the master

5
>y ) <1
’q’ bwgy | —
k= 1q<Q

r<R)
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New linear program

( MaXIMIZE p = p{1) UNDER THE CONSTRAINTS
K
Vk € [lam]an < Q( ,Vr < R Zpl ar = p‘(L) (k)
(k) (1)
Vke[l,m, Z2=1"
7rk T
k) ’Y(_;,_)l
vie [1,n], Z ) (:q, T >§1
k= 1q<Q
r<R(®)
k) 0 +)1
Vi € [1,n], Z Z o, <1
k= 1q<Q
r<R()
5 )
ZZ > ( ) ’“) <1
’ bWo
i=1 k= 1q<Q k)
\ r<R(k)
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Performance

Theorem.

An optimal solution of the Linear Program describes a solution
with a throughput p larger than p*/(1 + ¢) (with a great
probability), where p* is the optimal throughput.
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Presentation outline

Online Case: Tasks With Different Characteristics
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Aim

» Non-clairvoyant about computation volumes

» Communication volumes can be supposed to be known

» Underlying distributions are unknown

Is there any hope?
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Case with dominant computations

Theorem.
ON-DEMAND policy is asymptotically optimal when

» Computations are always dominant:

(k) (K) (.
Vi € [1,n], i Xeomp (1) > maxw
k,u S; k' u’ bW,'

» The master’'s bandwidth is not constraining;:

bWo Z zn: bW,'
i=1

» Each worker as a limited number of buffers (€ [2, npyfrers])
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Case with infinite buffers

Theorem.
ON-DEMAND has no constant competitive ratio

» 1 application with N tasks and unitary communication and
computation volume, master's bandwidth not constraining

> lezﬁ;bW2:...:an:1
> s1=2(n—1)N;sp =...=5s,=1
» Possible schedule: ignore worker Py:
makespan ,,, < {%W +1
» solution of ON-DEMAND 1 task each for Ps, ..., P,
N — (n — 1) tasks for P;.
Makespangy pevann = (N — (n—1))s; > N x Makespan
(for N > 4n).

opt
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Case with dominant communications

Theorem.
ON-DEMAND policy is asymptotically optimal when

» Communications are always dominant:

k k/
viell,n] maxw < min Xeomm(')
o kou Sj N N7 bw;

» Each worker has a limited number of buffers (€ [2, npyufrers|)

21/26



Practical heuristics

» Use the first 10% of instances to gather data on applications

» From this sample, split applications into virtual applications
» arithmetical buckets
» geometrical buckets
» recursive buckets
(We only report on Geometrical buckets has they lead to
(slightly) better results)

» Apply the multi-application linear program on the virtual
applications (with the rounding used for tasks with different
characteristics)

» Schedule realized using a 1D load-balancing among processors
(per virtual application)
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Presentation outline

Simulations
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Simulation settings

>

>

>

3 or 4 applications

100, 1000, or 5000 instances per application

Communication volume uniformly picked in

[MiNcomm; MaXcomm] With Maxcomm / Mincomm in
{1,1.35,1.65,2.35,2.65}.

Correlation factor ¢ € [0,1] (0: no correlation).

For instance u: EI)\,XC(é(,zqm(u) =A min(cf,znm (1-X) max(cf,znm
Veomp(i) is randomly picked in

[(qﬁz\ +1-—9) min(clf,znp +p(1—N) max(clf,znp,
oA mlncf,znp +(1 =)o) maxcomp}

Platforms: 3, 5, 10, or 15 workers.
Master's bandwidth = 1, 5, or 100 times the average
bandwidth of workers
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Overall results

Heuristic ‘ Normalized to best ‘ Normalized to UB ‘
ON-DEMAND 0.87 (o = 0.108) 0.821 (o = 0.109)
ROUND-ROBIN 0.779 (¢ = 0.123) | 0.736 (o = 0.126)
LP_samMP(ARITH, 1, 1) | 0.971 (¢ = 0.0362) | 0.917 (o = 0.0651)
LP_samP(GEOM, 2, 1) | 0.875 (¢ = 0.106) | 0.829 (¢ = 0.122)
LP_samp(GEOM, 4, 1) | 0.819 (¢ = 0.13) 0.777 (o = 0.144)
LP_sampP(GEOM, 8, 1) | 0.795 (¢ = 0.136) | 0.754 (0 = 0.149)
LP_saMP(GEOM, 2, 2) | 0.842 (¢ = 0.129) | 0.799 (0 = 0.144)
LP_samP(GEOM, 4, 4) | 0.812 (¢ = 0.139) | 0.771 (0 = 0.153)
0.05-approx 0.993 (¢ = 0.022) | 0.937 (0 = 0.0555)
0.2-approx 0.985 (¢ = 0.0201) | 0.93 (¢ = 0.0513)
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Conclusion

» Always worth to distinguish applications

» Further splitting worthwhile if
» Lots of instances
» Comparable communication and computation costs
» Communication-to-computation ratio depends of
communication volume
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