Scheduling Bags of Non-identical Tasks

Henri Casanova, Matthieu Gallet and Frédéric Vivien

June 2, 2010

 Several bag-of-tasks applications (Each application is a collection of similar tasks)

A master-worker platform

Objective: maximizing the throughput

Bad news: a bag is made of similar but not identical tasks

Offline Case: Identical Tasks

Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations

Presentation outline

Offline Case: Identical Tasks

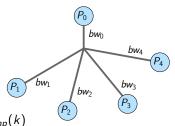
Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations

Notation

- A master P₀ which has an output bandwidth of bw₀
- *n* workers: P_1, \ldots, P_n
- Processor P_i has
 - ► a speed of s_i
 - an input bandwidth of bw_i
- m bag-of-tasks applications
- Tasks of bag k have
 - a volume of computation of $V_{comp}(k)$
 - ▶ a volume of communication of V_{comm}(k)
- Communication model: bounded multi-port with linear communication times



Constraints

1. Cumulative throughput of T_k :

$$\rho^{(k)} = \sum_{1 \le i < n} \rho_i^{(k)}$$

2. Throughput of T_k proportional to its priority:

$$\frac{\rho^{(k)}}{\pi_k} = \frac{\rho^{(1)}}{\pi_1}$$

Objective

MAXIMIZE
$$\rho^{(1)}$$

Constraints (continued)

3. Constraint on computation capabilities of worker P_i

$$\sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comp}(k)}{s_i} \le 1$$

4. Constraint on communication capabilities of worker P_i

$$\sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comm}(k)}{bw_i} \le 1$$

5. Constraint on communication capabilities of the master

$$\sum_{1 \le i < n} \sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comm}(k)}{bw_0} \le 1$$

Complete Linear Program

 $\begin{cases} \text{Maximize } \rho^{(1)} \text{ under the constraints} \\ \forall k \in [1, m], \quad \sum_{1 \le i < n} \rho_i^{(k)} = \rho^{(k)} \\ \forall k \in [1, m], \quad \frac{\rho^{(k)}}{\pi_k} = \frac{\rho^{(1)}}{\pi_1} \\ \forall i \in [1, n], \quad \sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comp}(k)}{s_i} \le 1 \\ \forall i \in [1, n], \quad \sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comm}(k)}{bw_i} \le 1 \\ \sum_{1 \le i < n} \sum_{1 \le k \le m} \rho_i^{(k)} \frac{V_{comm}(k)}{bw_0} \le 1 \end{cases}$

Offline Case: Identical Tasks

Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations

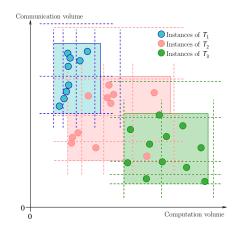
Notation

- A master P_0 which has an output bandwidth of bw_0
- *n* workers: P_1, \ldots, P_n
- Processor P_i has
 - ► a speed of s_i
 - an input bandwidth of bw_i
- m bag-of-tasks applications
- Tasks of bag k have
 - X^(k)_{comm} is a random variable the u-th instance has a communication volume of X^(k)_{comm}(u) min^(k)_{comm} ≤ X^(k)_{comm}(u) ≤ max^(k)_{comm}
 - X^(k)_{comp} is a random variable the u-th instance has a computation volume of X^(k)_{comp}(u) min^(k)_{comp} ≤ X^(k)_{comp}(u) ≤ max^(k)_{comp}

 Communication model: bounded multi-port with linear communications times

An ε -approximation scheme

Underlying principle: split each application into several virtual applications in which two instances only have small differences in term of communication and computation volumes.



Formal splitting

$$\gamma_q^{(k)} = (1 + \varepsilon)^q \min_{comp}^{(k)}$$
, with $0 \le q \le Q^{(k)} = 1 + \left\lfloor \frac{\ln\left(\frac{\max_{comp}}{\min_{comp}}\right)}{\ln(1 + \varepsilon)} \right\rfloor$

$$\delta_r^{(k)} = (1 + \varepsilon)^r \min_{comm}^{(k)}, \text{ with } 0 \le r \le R^{(k)} = 1 + \left\lfloor \frac{\ln\left(\frac{\max(k)}{\min(m)}\right)}{\ln(1 + \varepsilon)} \right\rfloor$$

Instance *u* of T_k belongs to $I_{q,r}^{(k)} = \left[\gamma_q^{(k)}; \gamma_{q+1}^{(k)}\right] \times \left[\delta_r^{(k)}; \delta_{r+1}^{(k)}\right]$ if

•
$$\gamma_q^{(k)} \leq X_{comp}^{(k)}(u) \leq \gamma_{q+1}^{(k)}$$
 and
• $\delta_r^{(k)} \leq X_{comm}^{(k)}(u) \leq \delta_{r+1}^{(k)}$

Virtual applications

- ▶ Instances of T_k in $I_{q,r}^{(k)}$ define virtual application $T_{k,q,r}$
- ▶ p^(k)_{q,r} probability of an instance of T_k to belong to virtual application T_{k,q,r}:

$$p_{q,r}^{(k)} = \mathcal{P}\left(\gamma_q^{(k)} \le X_{comp}^{(k)} < \gamma_{q+1}^{(k)}; \delta_r^{(k)} \le X_{comm}^{(k)} < \delta_{r+1}^{(k)}
ight)$$
 $orall k, \sum_{q,r} p_{q,r}^{(k)} = 1$

- ρ^(k)_{i,q,r}: contribution of processor P_i to the throughput of virtual application T_{k,q,r}
- ► Throughput of virtual application T_{k,q,r} is related to the throughput of T_k:

$$\forall k, \forall q < Q^{(k)}, \forall r < R^{(k)}, \sum_{1 \le i < n} \rho_{i,q,r}^{(k)} = p_{q,r}^{(k)} \rho^{(k)}$$

Transposing the constraints

• Throughput of T_k is still proportional to its priority:

$$\forall k \in [1, m], \ \frac{\rho^{(k)}}{\pi_k} = \frac{\rho^{(1)}}{\pi_1}$$

Constraint on computation capabilities of worker P_i
 Problem: We do not know the execution time of instances
 Solution: We (conservatively) over-approximate them

$$\forall i \in [1, n], \sum_{k=1}^{m} \sum_{\substack{q < Q^{(k)} \\ r < R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\gamma_{r+1}^{(k)}}{s_i} \right) \le 1$$

Transposing the constraints (cont.)

Constraint on communication capabilities of worker P_i

$$\forall 1 \le i < n, \sum_{k=1}^{m} \sum_{\substack{q < Q^{(k)} \\ r \le R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\delta_{r+1}^{(k)}}{bw_i} \right) \le 1$$

Constraint on communication capabilities of the master

$$\sum_{k=1}^{m} \sum_{\substack{q < Q^{(k)} \\ r < R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\delta_{r+1}^{(k)}}{bw_0} \right) \le 1$$

New linear program

$$\begin{aligned} \text{MAXIMIZE } \rho &= \rho^{(1)} \text{ UNDER THE CONSTRAINTS} \\ \forall k \in [1, m], \forall q < Q^{(k)}, \forall r < R^{(k)}, \quad \sum_{i=1}^{n} \rho_{i,q,r}^{(k)} = p_{q,r}^{(k)} \rho^{(k)} \\ \forall k \in [1, m], \quad \frac{\rho^{(k)}}{\pi_k} &= \frac{\rho^{(1)}}{\pi_1} \\ \forall i \in [1, n], \quad \sum_{k=1}^{m} \sum_{\substack{q < Q^{(k)} \\ r < R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\gamma_{q+1}^{(k)}}{s_i} \right) \leq 1 \\ \forall i \in [1, n], \quad \sum_{k=1}^{m} \sum_{\substack{q < Q^{(k)} \\ r < R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\delta_{r+1}^{(k)}}{bw_i} \right) \leq 1 \\ \sum_{i=1}^{n} \sum_{\substack{k=1}}^{m} \sum_{\substack{q < Q^{(k)} \\ r < R^{(k)}}} \left(\rho_{i,q,r}^{(k)} \frac{\delta_{r+1}^{(k)}}{bw_0} \right) \leq 1 \end{aligned}$$

Theorem.

An optimal solution of the Linear Program describes a solution with a throughput ρ larger than $\rho^*/(1+\varepsilon)$ (with a great probability), where ρ^* is the optimal throughput.

Offline Case: Identical Tasks

Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations

- Non-clairvoyant about computation volumes
- Communication volumes can be supposed to be known
- Underlying distributions are unknown

Is there any hope?

Case with dominant computations

Theorem.

 $\operatorname{On-Demand}$ policy is asymptotically optimal when

Computations are always dominant:

$$\forall i \in [1, n], \qquad \min_{k, u} \frac{X_{comp}^{(k)}(u)}{s_i} \geq \max_{\substack{k', u'}} \frac{X_{comm}^{(k')}(u')}{b_{w_i}}$$

The master's bandwidth is not constraining:

$$bw_0 \ge \sum_{i=1}^n bw_i$$

▶ Each worker as a limited number of buffers (∈ [2, n_{buffers}])

Case with infinite buffers

Theorem.

ON-DEMAND has no constant competitive ratio

► 1 application with *N* tasks and unitary communication and computation volume, master's bandwidth not constraining

•
$$bw_1 = \frac{1}{2N}$$
; $bw_2 = ... = bw_n = 1$

•
$$s_1 = 2(n-1)N; s_2 = ... = s_n = 1$$

► Possible schedule: ignore worker
$$P_1$$
:
 $makespan_{opt} \leq \left\lceil \frac{N}{n-1} \right\rceil + 1$

Case with dominant communications

Theorem.

 $\operatorname{On-Demand}$ policy is asymptotically optimal when

Communications are always dominant:

$$\forall i \in [1, n], \qquad \max_{k, u} \frac{X_{comp}^{(k)}(u)}{s_i} \leq \min_{k', u'} \frac{X_{comm}^{(k')}(u')}{bw_i}$$

▶ Each worker has a limited number of buffers (∈ [2, *n_{buffers}*])

Practical heuristics

▶ Use the first 10% of instances to gather data on applications

▶ From this sample, split applications into virtual applications

- arithmetical buckets
- geometrical buckets
- recursive buckets

(We only report on Geometrical buckets has they lead to (slightly) better results)

- Apply the multi-application linear program on the virtual applications (with the rounding used for tasks with different characteristics)
- Schedule realized using a 1D load-balancing among processors (per virtual application)

Offline Case: Identical Tasks

Offline Case: Tasks With Different Characteristics

Online Case: Tasks With Different Characteristics

Simulations

Simulation settings

- 3 or 4 applications
- ▶ 100, 1000, or 5000 instances per application
- ➤ Communication volume uniformly picked in [min_{comm}; max_{comm}] with max_{comm} / min_{comm} in {1,1.35, 1.65, 2.35, 2.65}.
- Correlation factor $\phi \in [0, 1]$ (0: no correlation). For instance $u: \exists \lambda, X_{comm}^{(k)}(u) = \lambda \min_{comm}^{(k)} + (1 - \lambda) \max_{comm}^{(k)} V_{comp}(i)$ is randomly picked in

$$\begin{bmatrix} (\phi\lambda + 1 - \phi) \min_{comp}^{(k)} + \phi(1 - \lambda) \max_{comp}^{(k)}, \\ \phi\lambda \min_{comp}^{(k)} + (1 - \lambda\phi) \max_{comp}^{(k)} \end{bmatrix}$$

Platforms: 3, 5, 10, or 15 workers.
 Master's bandwidth = 1, 5, or 100 times the average bandwidth of workers

Overall results

Heuristic	Normalized to best	Normalized to UB
On-Demand	$0.87~(\sigma = 0.108)$	$0.821~(\sigma = 0.109)$
Round-Robin	$0.779~(\sigma = 0.123)$	$0.736~(\sigma=0.126)$
LP_SAMP(ARITH, 1, 1)	$0.971 \ (\sigma = 0.0362)$	$0.917~(\sigma = 0.0651)$
LP_SAMP(GEOM, 2, 1)	$0.875~(\sigma = 0.106)$	$0.829 \ (\sigma = 0.122)$
LP_SAMP(GEOM, 4, 1)	$0.819~(\sigma = 0.13)$	$0.777~(\sigma = 0.144)$
LP_SAMP(GEOM, 8, 1)	$0.795~(\sigma=0.136)$	$0.754~(\sigma=0.149)$
LP_SAMP(GEOM, 2, 2)	$0.842 \ (\sigma = 0.129)$	$0.799~(\sigma = 0.144)$
LP_SAMP(GEOM, 4, 4)	$0.812~(\sigma = 0.139)$	$0.771~(\sigma=0.153)$
0.05-approx	$0.993 \ (\sigma = 0.022)$	$0.937~(\sigma = 0.0555)$
0.2-approx	0.985 ($\sigma = 0.0201$)	$0.93~(\sigma = 0.0513)$

Always worth to distinguish applications

- Further splitting worthwhile if
 - Lots of instances
 - Comparable communication and computation costs
 - Communication-to-computation ratio depends of communication volume