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Introduction

System made of N objects (processors, tasks, buffers,...).
We want to compute the behavior of this system. This
computation has a complexity C (N) that grows with N (linear,
polynomial, exponential).
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Work stealing (WS)

Work stealing principle: idle processors steal work from busy
ones.
A task (made of several jobs) is distributed over N processors.
When one processor becomes idle, it chooses a victim processor
(according to some rule, TBD), and steals a fraction (typically
half) of its remaining work.
Some properties:

Near optimal for the makespan (in the homogeneous case)

M =
W

N
+ O(γ−1C ).

Processor oblivious and stable.

Application oblivious.

Works well in practice.

Implemented in many libraries (Cilk, TBB, Kaapi).



Goal of this work

Study the behavior of WS for parallel tasks, when used in large
heterogeneous plateforms (grids), in the stationary regime.
In particular, we want to build a high level model of WS and
optimize the key parameters:

choose the best processor to steal from (tradeoff between
communication speed and load balancing).

choose the best steal fraction (tradeoff between local and
global balance).

distribute the incoming work among processors.



Mean field

Mean field principle: The behavior of a complex system made of
N objects becomes simpler when N goes to infinity.

O1, . . .ON objects in S (of size S).
The empirical measure of the system, for each state s ∈ S, is

X N
s =

1

N

N∑
n=1

1On=s

Main feature: the dynamics of the system is invariant by
permutation of the objects:

(O1(k), . . . ,ON(k)) =db

(
Oσ(1)(k), . . . ,Oσ(N)(k)

)
.

Under this invariance, X N(k) = (X N
1 (k), . . . ,X N

S (k)) has the
Markov property:
The value of X N(k + 1) only depends on the value of X N(k).



Mean field (II)

The drift of the system at measure x ∈ P(S) is

F N(x)
def
= E(X N(k + 1)− X N(k)|X N(k) = x).

The drift dictates the limiting behavior.
If F N → 0, the intensity I (N) is its speed to 0:

f (·) def
= lim

N→∞
F N(·)/I (N).

If F N does not go to 0, its limit is F (·) def
= limN F N(·).

In the first case, the mean field limit is the ODE dx(t)/dt = f (x).
In the second case, the mean field limit remains in discrete time:
x(k + 1) = x(k) + F (x).

Theorem (Kurtz 86, Benaim 98)

case 1 X N(btI (N)c)→ x(t) uniformly on [0,T ].

case 2 X N(k)→ x(k), uniformly on [0,K ].

In both cases, if the mean field has a unique attractor x∗, the
stationary measure πN of X N converges to the Dirac measure δx∗ .



Mean field (III)
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Mean Field: A simple example

The state space S = {0, 1}. At each step, one object is selected at
random and flips a coin.

The empirical measure X N
1 is the proportion of ones.

The drift is F N(x) = 1
N ((1− x)/2− x/2), so that I (N) = 1/N and

f (x) = 1/2− x .

We are in case 1:
The limit system satisfies the differential equation
dx/dt = 1/2− x . The solution is x(t) = 1

2 −
(

1
2 − x0

)
e−t .

Its unique attractor is x∗ = 1/2.



Simple example (II)



Work stealing model

Let {1, . . . ,C} be the set of clusters and K be the buffer capacity
of each processor.

If processor p belongs to cluster cp and has jp jobs in its buffer, its
state is (cp, jp).
If p has 0 job and tries to steal from a processor q in cluster cq its
state is (cp, 0, cq).

Stealing rate of c in c ′ is γcc ′ (does not depend on the
number of stolen jobs).

The arrival rate per proc. in cluster c is λc .

The speed of a proc. in c is µc (equals one by default).

A proc. in c steals from c ′ with probability pcc ′ .



Work stealing model (II)
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Mean field limit of WS

ẋc0c ′ = µcxc1pcc ′ − (λc + γcc ′)xc0c ′ +
∑
c ′′

γcc ′′xc0c ′′
xc ′′0 + xc ′′1

xc ′′
pcc ′

ẋc1 = µcxc2 − (µc + λc)xc1 +
∑
c ′

λcxc0c ′ +
∑
c ′

γc ′cxc ′0cxc2/xc

+
∑
c ′

γcc ′xc0c ′(xc ′2 + xc ′3)/xc ′

ẋcj = −(µc + λc1j<K )xc,j + µcxc,j+1 + λcxc,j−1

+
∑
c ′

γc ′cxc ′0c(xc,2j + xc,2j−1)/xc

+
∑
c ′

γcc ′xc0c ′(xc ′,2j + xc ′,2j+1)/xc ′

−
∑
c ′

γc ′cxc ′0cxcj/xc ,



Simulations

50 procs 1000 procs ODE



One cluster

If all processors belong to the same cluster, the ODE has a unique
stationary point, that can be computed using the following
iteration.

x0 ← 1− λ/µ
x1 ← λ(1− λ) γ+µ

(1−λ)γ+µ2

∀j ≥ 2 : xj ← 0.
repeat
∀j ≥ 2

xj← 1
λ+µ+γx0

(
λxj−1 + µxj+1 + γx0(x2j−1+2x2j+x2j+1)

)



Numerical results: Sojourn time

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e

γ

λ=0.3
λ=0.7
λ=0.9

Figure: Average sojourn time as a function of the rate of stealing γ for
various values of λ (.3, .7 and .9). As expected, the average sojourn time
is decreasing from S(0) = 1/(1− λ) to S(∞) = 1/µ = 1. When γ is
small, the average number of jobs in the system decreases drastically.



Numerical results: Number of steals
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Figure: Average number of successful steals per job Vλ(γ) viewed as a
function of γ for different values of λ (.3, .7 and .9).
The number of steals per job ranges from Vλ(0) = 0 to
Vλ(∞) = P(non − empty − buffer) = λ.



Stealing fraction
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Figure: Average sojourn time as a function of the fraction of jobs stolen
at each time for λ = .9 and γ = 3.



Batch arrivals
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Figure: Average sojourn time as a function of the batch size for λ = .7.
The higher curve represents a system without work stealing while the
bottom one shows the results for γ = 3.



Beyond the empirical measure

Let JN(t) be the state of one particular processor at time t. For
finite N, the behavior of the processor JN(t) is not independent of
the behavior of X N(t): each transition in JN(t) changes X N(t).
The process JN(t) is not Markovian and is very complicated.
In the limit however, JN(t) goes to a non-homogeneous Markovian
process.

Theorem

(JN(t),X N(t)) converges weakly to a continuous time jump and
drift process (Y (t), x(t)) where x(t) satisfies the ODE and Y (t) is
a non-homogeneous jump process of kernel K (x(t)).



Extreme values of the number of steals
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Figure: Fraction of jobs that are stolen twice or more as a function of γ.



Extreme values of Sojourn times
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Figure: 99 percentiles of the sojourn time and of an exponential variable
of the same mean, as functions of γ, for λ = .7.



Several Homogeneous clusters
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Figure: Average sojourn time in a system with two homogeneous clusters
as a function of the probability for a processor to steal inside its cluster
when inter-cluster communication is 10 times slower.



Heterogeneous clusters
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Figure: Average sojourn time as a function of p00 for the two
heterogeneous model. The first cluster is lightly loaded (λ0 = .5). The
load of the second cluster is λ1 (varying from .8 to 1.1).



Hierarchical work stealing: master-worker paradigm
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Figure: Comparison of the average sojourn time in the Master-Worker
setting with one cluster. Average sojourn time when the batch size is 1.



Hierarchical work stealing (II)
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Figure: Comparison of the average sojourn time in the Master-Worker
setting with one cluster. Average sojourn time when the batch size is 20.

Having the arrivals concentrated on masters improves the
performance if the probabilities of stealing are correctly tuned.


