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Motivation: BlueWaters

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy
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MinIO and MinMemory problems

MinIO

Given the size M of the main memory, determine the minimum I/O
volume that is required to execute the application.

Today :

MinMemory

Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory



4/ 18

MinIO and MinMemory problems

MinIO

Given the size M of the main memory, determine the minimum I/O
volume that is required to execute the application.

Today :

MinMemory

Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory



5/ 18

Application model

I Application modeled by DAGs

I File sizes on edges

I Computation memory overhead on nodes

I Homogeneous MinMemory (a.k.a. pebble game) on DAGs
is NP-complete (Sethi’73).

Refine analysis for tree-shaped workflows
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Motivation: Sparse Matrices and linear algebra

I Large peak memory requirements

I Memory usage becomes a bottleneck

I Objective: Minimize the amount of required memory, and
minimize the IO-volume for out-of-core computations
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Introduction: tree-shaped workflows
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I Input file of size fi .

I Execution file of size ni .

I Root input file of null size.

I Leaf nodes produce files of
null size.

I Memory required for node i :

MemReq(i) = fi+ni+
∑
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Introduction: model emulation

I Data is overwritten

I Liu’s model (no weight on edges)

Overwritten data model

max(fi ,
∑
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Introduction: model emulation

I Data is overwritten
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Liu’s model
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The MinMemory problem

MinMemory

Given a tree T with p nodes, determine the minimum amount of
memory M such that there exists a schedule σ(T , p,M).

MinMemory has polynomial-time complexity (Liu’87).
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Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.



11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.



11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

. . .. . .

M/n M/n

M/nM/n

M M M M

0 0 0 0

. . .

I Minimum memory

Mmin = M

I Any post-order traversal

Mmin = M + (n− 1)M/n



11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/nM/n

. . . . . .. . .

0000

M/n M/n

MMM M

I Minimum memory

Mmin = M

I Any post-order traversal

Mmin = M+2(n−1)M/n



12/ 18

Liu’s optimal algorithm (Liu’87)

I Extends the original pebble game on trees (Tarjan’80).

I Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

I Combination based on the notion of Hill-Valley Segments.
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I Complexity : O(N2)
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MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)
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Performance of MinMem

Sparse Cholesky assembly trees
Runtimes / MinMem using AMD ordering
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Performance of MinMem

Sparse Cholesky assembly trees
Runtimes / MinMem using METIS ordering
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Performance of MinMem

Memory required to process randomly weighted assembly trees

I Keep assembly tree structure.

I Randomly set the weights.

Matrix Optimal Post-Order Improvement

tandem dual METIS agg =1 36229.20 46811.40 0.29

onera dual METIS agg =1 32537.20 41873.00 0.29

poisson3Db METIS agg =1 12809.60 17562.60 0.37

poisson3Db METIS agg =4 6812.40 8505.40 0.25

poisson3Db METIS agg =16 4389.40 5157.40 0.17

poisson3Db AMD agg =1 14346.80 18703.60 0.30

poisson3Db AMD agg =4 7448.20 8471.00 0.14

poisson3Db AMD agg =16 3504.60 3993.40 0.14



17/ 18

Outline

Introduction
Tree-shaped workflows

In-core schedules and the MinMemory problem
Post-order traversal in the general case
Liu’s optimal algorithm
MinMem optimal algorithm
Experimental results

Conclusion



18/ 18

Conclusion and perspectives

Contributions

I Post-order traversal can be arbitrarily bad.

I In preliminary experiments, Post-order almost always optimal.

I New optimal top-down algorithm for MinMemory.

I Experimental performance evaluation of Liu, Post-order and
MinMem using real-life sparse Cholesky factorization assembly
trees.

Ongoing work

I Benchmark all algorithms on an extensive collection of sparse
assembly trees.

I Investigate MinIO problem.

Future work

I Extend to DAGs using heuristics.

I Write efficient data replacement policies based on MinIO, in
the context of BlueWaters.
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