Memory-aware schedules for tree-shaped
workflows

Mathias Jacquelin, Loris Marchal, Yves Robert and Bora Ucar
CNRS & Ecole Normale Supérieure de Lyon, France

INRIA ROMA project-team
LIP (ENS-Lyon, CNRS, INRIA)

Ecole Normale Supérieure de Lyon, France

Workshop in Aussois,
Aussois, June 3, 2010.

1/ 18

Qutline

Introduction
Tree-shaped workflows

In-core schedules and the MINMEMORY problem
Post-order traversal in the general case
Liu's optimal algorithm
MinMem optimal algorithm
Experimental results

Conclusion

2/ 18

Motivation: BlueWaters

%I INRIA HLEDEPEﬂﬁE[UEFﬂé KVNNCSA

» Sustained Petaflops/s for general applications.

3/18

Motivation: BlueWaters

Memory

Speed
Hard disks (RAID)

Tape drives

» Sustained Petaflops/s for general applications.

» Hierarchical storage system

3/18

Motivation: BlueWaters

Memory

) Cost Hard disks (Cache)
Hard disks (RAID)

Speed

Tape drives

Tape drives (Main storage space)

» Sustained Petaflops/s for general applications.
» Hierarchical storage system
» Hard disk drives used as ‘'cache"

3/18

Motivation: BlueWaters

Memory

) Cost Hard disks (Cache)
Hard disks (RAID)

Speed

Tape drives

Tape drives (Main storage space)

» Sustained Petaflops/s for general applications.
» Hierarchical storage system

» Hard disk drives used as ‘'cache"
» Tape drives used as actual permanent storage media

3/18

Motivation: BlueWaters

Memory

o Cost Hard disks (Cache)
Hard disks (RAID)

Speed

Tape drives

Tape drives (Main storage space)

» Sustained Petaflops/s for general applications.
» Hierarchical storage system

» Hard disk drives used as ‘'cache"
» Tape drives used as actual permanent storage media

» Objective: Design an efficient disk management policy

3/18

MinlO and MinMemory problems

MINIO

Given the size M of the main memory, determine the minimum 1/0
volume that is required to execute the application.

4/ 18

MinlO and MinMemory problems

MiINIO
Given the size M of the main memory, determine the minimum 1/0
volume that is required to execute the application.

Today :

MINMEMORY
Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory

4/ 18

Application model

» Application modeled by DAGs

» File sizes on edges

» Computation memory overhead on nodes

» Homogeneous MINMEMORY (a.k.a. pebble game) on DAGs
is NP-complete (Sethi'73).

Refine analysis for tree-shaped workflows

5/ 18

Motivation: Sparse Matrices and linear algebra

> Large peak memory requirements

» Memory usage becomes a bottleneck

» Objective: Minimize the amount of required memory, and
minimize the 10-volume for out-of-core computations

6/ 18

Introduction: tree-shaped workflows

p nodes.
Input file of size f;.

>
>

» Execution file of size n;.

» Root input file of null size.
>

Leaf nodes produce files of
null size.

» Memory required for node /:

MemReq(i) = fi+nj+ Z i
Jj€Children(i)

7/18

Introduction: model emulation

» Data is overwritten

Overwritten data model Our model
max(fi, > e chitdren(i) fi + ni + 3 je chitdren(i i

8/ 18

Introduction: model emulation

» Data is overwritten

» Liu's model (no weight on edges)

Liu's model Our model

max(n;, Eje Children(i) T) fi + ni + Zje Children(i) fj

8/ 18

QOutline

In-core schedules and the MINMEMORY problem

9/18

The MinMemory problem

MINMEMORY
Given a tree 7 with p nodes, determine the minimum amount of
memory M such that there exists a schedule o(7T, p, M).

MINMEMORY has polynomial-time complexity (Liu'87).

10/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

» Minimum memory
Mmin = M
» Any post-order traversal

Mmin = M+(n—1)M/n

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

» Minimum memory
Mmin = M
» Any post-order traversal

Mumin = M+2(n—1)M/n

11/ 18

Liu’s optimal algorithm (Liu’87)

» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.

12/ 18

Liu’s optimal algorithm (Liu’87)

» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining

schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.

T([A]

[Schedule : {N, L, O, M, K, H, I,

F,J,G,D,BE, C, A}
Cost sequence : {E(7), A(1)}

Valley segments : {(NA = 6)}

[Schedule : {1, F, J, G, D B}

Cost sequence : {J(5), B(2)}
| Valley segments : {(IB = 3)}

[Schedule : {N, L, 0, M, K, H, E, C}
]| Cost sequence : {K(6) (), E(5), C(3)}
| Valley segments : {(4), (1 2

IC =2)}

12/ 18

Liu’s optimal algorithm (Liu’87)

» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining

schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.

T([A]

» Complexity : O(N?)

[Schedule : {N, L, O, M, K, H, I,

F,J,G,D,BE, C, A}
Cost sequence : {E(7), A(1)}

Valley segments : {(NA = 6)}

[Schedule : {1, F, J, G, D B}

Cost sequence : {J(5), B(2)}
| Valley segments : {(IB = 3)}

[Schedule : {N, L, 0, M, K, H, E, C}
]| Cost sequence : {K(6) (), E(5), C(3)}
| Valley segments : {(4), (HC = 2)}

12/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut

13/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut

13/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut

13/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut

13/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut

13/ 18

MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using

previous cut as a shortcut
» Complexity : O(N?)

13/ 18

M3
7.5

1

40.2
7.2

1

BMinMem

B@Best post-order

OLiu's optimal algorithm
39.9

4.9
[

1

63.2
6.7|

1

266
33|‘
. -

1

42.6
4.9
a

39.1
71
1 I

58.3

1

50.3

Sparse Cholesky assembly trees
Runtimes / MinMem using AMD ordering

7.8

1

48.1

6.2

1

434

70

60

50

40

30

10 8.2
0 -

Performance of MinMem

14/ 18

wet

o

wat

mﬁu%e S

9@%3
Cid

09

».,asam).w

9090439/
G 4*696)
gt

%@oﬁo)

%Goo,_sﬂ

1S
va%m.z

Performance of MinMem

180

160

140

120

100

80

60

40

20

o
1)

|-

srl@“)“v’ |

170.4

Sparse Cholesky assembly trees
Runtimes / MinMem using METIS ordering

BMinMem
BBest post-order
OLiu's optimal algorithm
45.9 46.8 45.1
374 45 399 402
Z 315 329
6.5 59 47 6.0 6.3 51 5.7 6.0 8.5 8.4
2mil AR lml] lmll w2 Cml] tml] W LW
o) Q) o = ey Fy [")
% % 5 % 3) % % 3 %
Q) -4) 3, o EY z =3
A 3 % 3 3, Y 2 % %
(S > > N 4 > ‘g \g
£ >

15/ 18

Performance of MinMem

Memory required to process randomly weighted assembly trees

> Keep assembly tree structure.

» Randomly set the weights.

Matrix Optimal | Post-Order | Improvement
tandem_dual METIS agg =1 | 36229.20 46811.40 0.29
onera_dual METIS agg =1 32537.20 41873.00 0.29
poisson3Db METIS agg =1 | 12809.60 17562.60 0.37
poisson3Db METIS agg =4 6812.40 8505.40 0.25
poisson3Db METIS agg =16 | 4389.40 5157.40 0.17
poisson3Db AMD agg =1 14346.80 18703.60 0.30
poisson3Db AMD agg =4 7448.20 8471.00 0.14
poisson3Db AMD agg =16 3504.60 3993.40 0.14

16/ 18

QOutline

Conclusion

17/ 18

Conclusion and perspectives

Contributions

v

Post-order traversal can be arbitrarily bad.

> In preliminary experiments, Post-order almost always optimal.
» New optimal top-down algorithm for MINMEMORY.
>

Experimental performance evaluation of Liu, Post-order and
MinMem using real-life sparse Cholesky factorization assembly
trees.

Ongoing work

» Benchmark all algorithms on an extensive collection of sparse
assembly trees.

> Investigate MINIO problem.
Future work
» Extend to DAGs using heuristics.

» Write efficient data replacement policies based on MINIO, in
the context of BlueWaters. 18/ 18

	Introduction
	Tree-shaped workflows

	In-core schedules and the MinMemory problem
	Post-order traversal in the general case
	Liu's optimal algorithm
	MinMem optimal algorithm
	Experimental results

	Conclusion

