
1/ 18

Memory-aware schedules for tree-shaped
workflows

Mathias Jacquelin, Loris Marchal, Yves Robert and Bora Uçar

CNRS & École Normale Supérieure de Lyon, France

INRIA ROMA project-team
LIP (ENS-Lyon, CNRS, INRIA)

École Normale Supérieure de Lyon, France

Workshop in Aussois,
Aussois, June 3, 2010.

2/ 18

Outline

Introduction
Tree-shaped workflows

In-core schedules and the MinMemory problem
Post-order traversal in the general case
Liu’s optimal algorithm
MinMem optimal algorithm
Experimental results

Conclusion

3/ 18

Motivation: BlueWaters

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy

3/ 18

Motivation: BlueWaters

Memory

Hard disks (RAID)

Tape drives

Speed Cost

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy

3/ 18

Motivation: BlueWaters

Hard disks (Cache)

Tape drives (Main storage space)

Memory

Cost

Memory

Hard disks (RAID)

Tape drives

Speed

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy

3/ 18

Motivation: BlueWaters

Hard disks (Cache)

Tape drives (Main storage space)

Memory

Cost

Memory

Hard disks (RAID)

Tape drives

Speed

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy

3/ 18

Motivation: BlueWaters

Hard disks (Cache)

Tape drives (Main storage space)

Memory

Cost

Memory

Hard disks (RAID)

Tape drives

Speed

I Sustained Petaflops/s for general applications.
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Objective: Design an efficient disk management policy

4/ 18

MinIO and MinMemory problems

MinIO

Given the size M of the main memory, determine the minimum I/O
volume that is required to execute the application.

Today :

MinMemory

Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory

4/ 18

MinIO and MinMemory problems

MinIO

Given the size M of the main memory, determine the minimum I/O
volume that is required to execute the application.

Today :

MinMemory

Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory

5/ 18

Application model

I Application modeled by DAGs

I File sizes on edges

I Computation memory overhead on nodes

I Homogeneous MinMemory (a.k.a. pebble game) on DAGs
is NP-complete (Sethi’73).

Refine analysis for tree-shaped workflows

6/ 18

Motivation: Sparse Matrices and linear algebra

I Large peak memory requirements

I Memory usage becomes a bottleneck

I Objective: Minimize the amount of required memory, and
minimize the IO-volume for out-of-core computations

7/ 18

Introduction: tree-shaped workflows

f4

4 n55

n11

n33n22

f3

0

0

f2

0 0

f5

n4

I p nodes.

I Input file of size fi .

I Execution file of size ni .

I Root input file of null size.

I Leaf nodes produce files of
null size.

I Memory required for node i :

MemReq(i) = fi+ni+
∑

j∈Children(i)

fj

8/ 18

Introduction: model emulation

I Data is overwritten

I Liu’s model (no weight on edges)

Overwritten data model

max(fi ,
∑

j∈Children(i) fj)

E

1
1 2

1 21 3

G H

A

C DB

E F

⇒

Our model

fi + ni +
∑

j∈Children(i) fj

E

1 21 3

1
1 2

-1

G

A

C DB

E F H

-1

0 0 0

0

-2

0

8/ 18

Introduction: model emulation

I Data is overwritten

I Liu’s model (no weight on edges)

Liu’s model

max(ni ,
∑

j∈Children(i) nj)

A

2

C 3

G

B 2

1 2H

5E

2L

6K

D 2

F 3

I 5

N 3 O 3

M 2

J

1

⇒

Our model

fi + ni +
∑

j∈Children(i) fj

0

-4 0

-4

D

3

I J

1

K

2

N O

2

2

E

3

A

2

2 1

1 1

9/ 18

Outline

Introduction
Tree-shaped workflows

In-core schedules and the MinMemory problem
Post-order traversal in the general case
Liu’s optimal algorithm
MinMem optimal algorithm
Experimental results

Conclusion

10/ 18

The MinMemory problem

MinMemory

Given a tree T with p nodes, determine the minimum amount of
memory M such that there exists a schedule σ(T , p,M).

MinMemory has polynomial-time complexity (Liu’87).

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

.

M/n M/n

M/nM/n

M M M M

0 0 0 0

. . .

I Minimum memory

Mmin = M

I Any post-order traversal

Mmin = M + (n− 1)M/n

11/ 18

Post-order traversal in the general case

Best bottom-up post-order traversal (Liu’86)

Best post-order traversal is obtained by sorting, at each level,
subtrees in non increasing order of max

i∈subtree
(MemReq(i))− fsubroot.

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/nM/n

.

0000

M/n M/n

MMM M

I Minimum memory

Mmin = M

I Any post-order traversal

Mmin = M+2(n−1)M/n

12/ 18

Liu’s optimal algorithm (Liu’87)

I Extends the original pebble game on trees (Tarjan’80).

I Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

I Combination based on the notion of Hill-Valley Segments.

G 1

2

E 5

H 2

K 6

L 2

N 3 O 3

M 2

A 1

C 3B 2

D 2

F 3

I 5 J

I Complexity : O(N2)

12/ 18

Liu’s optimal algorithm (Liu’87)

I Extends the original pebble game on trees (Tarjan’80).

I Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

I Combination based on the notion of Hill-Valley Segments.

F, J, G, D, B E, C, A}

Valley segments : {(NA = 6)}
Cost sequence : {E(7), A(1)}T[A]

Schedule : {N, L, O, M, K, H, I,

Schedule : {N, L, O, M, K, H, E, C}
Cost sequence : {K(6), H(2), E(5), C(3)}
Valley segments : {(NH = 4) , (HC = 2)}

T[C]

Cost sequence : {J(5), B(2)}
Schedule : {I, F, J, G, D, B}

Valley segments : {(IB = 3)}
T[B]

E

B

D 2

F 3

I 5 J 2

G 1

3C

1A

2M

3O3N

2L

6K

2H

5

2

I Complexity : O(N2)

12/ 18

Liu’s optimal algorithm (Liu’87)

I Extends the original pebble game on trees (Tarjan’80).

I Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

I Combination based on the notion of Hill-Valley Segments.

F, J, G, D, B E, C, A}

Valley segments : {(NA = 6)}
Cost sequence : {E(7), A(1)}T[A]

Schedule : {N, L, O, M, K, H, I,

Schedule : {N, L, O, M, K, H, E, C}
Cost sequence : {K(6), H(2), E(5), C(3)}
Valley segments : {(NH = 4) , (HC = 2)}

T[C]

Cost sequence : {J(5), B(2)}
Schedule : {I, F, J, G, D, B}

Valley segments : {(IB = 3)}
T[B]

E

B

D 2

F 3

I 5 J 2

G 1

3C

1A

2M

3O3N

2L

6K

2H

5

2

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

13/ 18

MinMem optimal algorithm

I Based on the Explore subroutine
I Rationale: recursively computes the minimum cut of the tree

reachable with a memory of size M in a top-down approach.
I Returns:

I Cut of the subtree
I Schedule of the subtree to the cut
I Next smallest memory peak (impassable hill)

I Gradually increases the memory available for exploration using
previous cut as a shortcut

I Complexity : O(N2)

14/ 18

Performance of MinMem

Sparse Cholesky assembly trees
Runtimes / MinMem using AMD ordering

1 1 1 1 1 1 1 1 1 1 1

8.2
6.2 7.8

5.8 7.1
4.9 3.3

6.7
4.9

7.2 7.5

43.4

48.1
50.3

58.3

39.1
42.6

26.6

63.2

39.9 40.2 41.3

0

10

20

30

40

50

60

70

andrew
s

dubcova2

apache1

cfd1

cvxbqp1

denorm
al

finan512

gridgena

qa8fm

shallow
_w

at

er1

shallow
_w

at

er2

MinMem

Best post-order

Liu's optimal algorithm

15/ 18

Performance of MinMem

Sparse Cholesky assembly trees
Runtimes / MinMem using METIS ordering

1 1 1 1 1 1 1 1 1 1 1
6.2 6.5 8.9 4.7 6.0 6.3

1.0
5.7 6.0 8.5 8.4

170.4

45.9 46.8
37.4

31.5

45.1

5.1

32.9
41.5 39.9 40.2

0

20

40

60

80

100

120

140

160

180

andrew
s

dubcova2

apache1

cfd1

cvxbqp1

denorm
al

finan512

gridgena

qa8fm

shallow
_w

at

er1

shallow
_w

at

er2

MinMem

Best post-order

Liu's optimal algorithm

16/ 18

Performance of MinMem

Memory required to process randomly weighted assembly trees

I Keep assembly tree structure.

I Randomly set the weights.

Matrix Optimal Post-Order Improvement

tandem dual METIS agg =1 36229.20 46811.40 0.29

onera dual METIS agg =1 32537.20 41873.00 0.29

poisson3Db METIS agg =1 12809.60 17562.60 0.37

poisson3Db METIS agg =4 6812.40 8505.40 0.25

poisson3Db METIS agg =16 4389.40 5157.40 0.17

poisson3Db AMD agg =1 14346.80 18703.60 0.30

poisson3Db AMD agg =4 7448.20 8471.00 0.14

poisson3Db AMD agg =16 3504.60 3993.40 0.14

17/ 18

Outline

Introduction
Tree-shaped workflows

In-core schedules and the MinMemory problem
Post-order traversal in the general case
Liu’s optimal algorithm
MinMem optimal algorithm
Experimental results

Conclusion

18/ 18

Conclusion and perspectives

Contributions

I Post-order traversal can be arbitrarily bad.

I In preliminary experiments, Post-order almost always optimal.

I New optimal top-down algorithm for MinMemory.

I Experimental performance evaluation of Liu, Post-order and
MinMem using real-life sparse Cholesky factorization assembly
trees.

Ongoing work

I Benchmark all algorithms on an extensive collection of sparse
assembly trees.

I Investigate MinIO problem.

Future work

I Extend to DAGs using heuristics.

I Write efficient data replacement policies based on MinIO, in
the context of BlueWaters.

	Introduction
	Tree-shaped workflows

	In-core schedules and the MinMemory problem
	Post-order traversal in the general case
	Liu's optimal algorithm
	MinMem optimal algorithm
	Experimental results

	Conclusion

