Memory-aware schedules for tree-shaped workflows

Mathias Jacquelin, Loris Marchal, Yves Robert and Bora Uçar

CNRS & École Normale Supérieure de Lyon, France

INRIA ROMA project-team LIP (ENS-Lyon, CNRS, INRIA) École Normale Supérieure de Lyon, France

> Workshop in Aussois, Aussois, June 3, 2010.

Outline

Introduction Tree-shaped workflows

In-core schedules and the MINMEMORY problem Post-order traversal in the general case Liu's optimal algorithm *MinMem* optimal algorithm Experimental results

Conclusion

Sustained Petaflops/s for general applications.

- Hierarchical storage system
 - Hard disk drives used as "cache"
 - Tape drives used as actual permanent storage media
- Objective: Design an efficient disk management policy

- Sustained Petaflops/s for general applications.
- Hierarchical storage system
 - Hard disk drives used as "cache"
 - Tape drives used as actual permanent storage media
- Objective: Design an efficient disk management policy

- Sustained Petaflops/s for general applications.
- Hierarchical storage system
 - Hard disk drives used as "cache"
 - Tape drives used as actual permanent storage media
- Objective: Design an efficient disk management policy

- Sustained Petaflops/s for general applications.
- Hierarchical storage system
 - Hard disk drives used as "cache"
 - Tape drives used as actual permanent storage media
- Objective: Design an efficient disk management policy

- Sustained Petaflops/s for general applications.
- Hierarchical storage system
 - Hard disk drives used as "cache"
 - Tape drives used as actual permanent storage media
- Objective: Design an efficient disk management policy

MinIO

Given the size M of the main memory, determine the minimum I/O volume that is required to execute the application.

MinIO

Given the size M of the main memory, determine the minimum I/O volume that is required to execute the application.

Today :

MINMEMORY

Determine the minimum amount of main memory that is required to execute the application without any access to secondary memory

Application model

Application modeled by DAGs

- File sizes on edges
- Computation memory overhead on nodes
- Homogeneous MINMEMORY (a.k.a. pebble game) on DAGs is NP-complete (Sethi'73).

Refine analysis for tree-shaped workflows

Motivation: Sparse Matrices and linear algebra

- Large peak memory requirements
- Memory usage becomes a bottleneck
- Objective: Minimize the amount of required memory, and minimize the IO-volume for out-of-core computations

Introduction: tree-shaped workflows

- p nodes.
- Input file of size f_i.
- Execution file of size n_i .
- Root input file of null size.
- Leaf nodes produce files of null size.
- Memory required for node i:

$$MemReq(i) = f_i + n_i + \sum_{j \in Children(i)} f_j$$

Introduction: model emulation

Data is overwritten

Overwritten data model $\max(f_i, \sum_{j \in Children(i)} f_j)$

 \Rightarrow

Introduction: model emulation

Outline

Introduction Tree-shaped workflows

In-core schedules and the $\operatorname{MINMEMORY}$ problem

Post-order traversal in the general case Liu's optimal algorithm *MinMem* optimal algorithm Experimental results

Conclusion

MINMEMORY

Given a tree \mathcal{T} with p nodes, determine the minimum amount of memory M such that there exists a schedule $\sigma(\mathcal{T}, p, M)$.

MINMEMORY has polynomial-time complexity (Liu'87).

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level, subtrees in non increasing order of $\max_{i \in \text{subtree}} (MemReq(i)) - f_{\text{subroot}}.$

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level, subtrees in non increasing order of $\max_{i \in \text{subtree}} (MemReq(i)) - f_{\text{subroot}}.$

Post-order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level, subtrees in non increasing order of $\max_{i \in \text{subtree}} (MemReq(i)) - f_{\text{subroot}}.$

Post-order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

Minimum memory

$$M_{\min} = M$$

Any post-order traversal

$$M_{\min} = M + (n-1)M/n$$

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level, subtrees in non increasing order of $\max_{i \in \text{subtree}} (MemReq(i)) - f_{\text{subroot}}.$

Post-order traversals are arbitrarily bad in the general case There is no constant k such that the best post-order traversal is a k-approximation.

Minimum memory

$$M_{\min} = M$$

Any post-order traversal

$$M_{\min} = M + \frac{2(n-1)M}{n}$$

Liu's optimal algorithm (Liu'87)

- Extends the original pebble game on trees (Tarjan'80).
- Rationale: Recursive bottom-up algorithm combining schedules of subtrees.
- Combination based on the notion of Hill-Valley Segments.

Liu's optimal algorithm (Liu'87)

- Extends the original pebble game on trees (Tarjan'80).
- Rationale: Recursive bottom-up algorithm combining schedules of subtrees.
- Combination based on the notion of Hill-Valley Segments.

Liu's optimal algorithm (Liu'87)

- Extends the original pebble game on trees (Tarjan'80).
- Rationale: Recursive bottom-up algorithm combining schedules of subtrees.
- Combination based on the notion of Hill-Valley Segments.

► Complexity : $O(N^2)$

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut

- Based on the Explore subroutine
 - ► Rationale: recursively computes the minimum cut of the tree reachable with a memory of size *M* in a top-down approach.
 - Returns:
 - Cut of the subtree
 - Schedule of the subtree to the cut
 - Next smallest memory peak (impassable hill)
- Gradually increases the memory available for exploration using previous cut as a shortcut
- ► Complexity : $O(N^2)$

Performance of MinMem

Sparse Cholesky assembly trees Runtimes / *MinMem* using AMD ordering

Performance of MinMem

Sparse Cholesky assembly trees Runtimes / *MinMem* using METIS ordering

15/18

Performance of MinMem

Memory required to process randomly weighted assembly trees

- ► Keep assembly tree structure.
- Randomly set the weights.

Matrix	Optimal	Post-Order	Improvement
tandem_dual METIS $agg = 1$	36229.20	46811.40	0.29
onera_dual METIS agg $=1$	32537.20	41873.00	0.29
poisson3Db METIS $agg = 1$	12809.60	17562.60	0.37
poisson3Db METIS $agg = 4$	6812.40	8505.40	0.25
poisson3Db METIS $agg = 16$	4389.40	5157.40	0.17
poisson3Db AMD $agg=1$	14346.80	18703.60	0.30
poisson3Db AMD agg =4	7448.20	8471.00	0.14
poisson3Db AMD agg $=16$	3504.60	3993.40	0.14

Outline

Introduction Tree-shaped workflows

In-core schedules and the MINMEMORY problem Post-order traversal in the general case Liu's optimal algorithm *MinMem* optimal algorithm Experimental results

Conclusion

Conclusion and perspectives

Contributions

- Post-order traversal can be arbitrarily bad.
- ► In preliminary experiments, Post-order almost always optimal.
- ▶ New optimal top-down algorithm for MINMEMORY.
- Experimental performance evaluation of Liu, Post-order and MinMem using real-life sparse Cholesky factorization assembly trees.

Ongoing work

- Benchmark all algorithms on an extensive collection of sparse assembly trees.
- ► Investigate MINIO problem.

Future work

- Extend to DAGs using heuristics.
- ► Write efficient data replacement policies based on MINIO, in the context of BlueWaters.