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» Sustained Petaflops/s for general applications.
» Hierarchical storage system

» Hard disk drives used as ‘'cache"
» Tape drives used as actual permanent storage media

» Objective: Design an efficient disk management policy
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MinlO and MinMemory problems
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MinlO and MinMemory problems

MiINIO
Given the size M of the main memory, determine the minimum 1/0
volume that is required to execute the application.

Today :

MINMEMORY
Determine the minimum amount of main memory that is required
to execute the application without any access to secondary memory
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Application model

» Application modeled by DAGs

» File sizes on edges

» Computation memory overhead on nodes

» Homogeneous MINMEMORY (a.k.a. pebble game) on DAGs
is NP-complete (Sethi'73).

Refine analysis for tree-shaped workflows
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Motivation: Sparse Matrices and linear algebra

> Large peak memory requirements

» Memory usage becomes a bottleneck

» Objective: Minimize the amount of required memory, and
minimize the 10-volume for out-of-core computations
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Introduction: tree-shaped workflows

p nodes.
Input file of size f;.

>
>

» Execution file of size n;.

» Root input file of null size.
>

Leaf nodes produce files of
null size.

» Memory required for node /:

MemReq(i) = fi+nj+ Z i
Jj€Children(i)
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Introduction: model emulation

» Data is overwritten

Overwritten data model Our model
max(fi, > e chitdren(i ) fi + ni + 3 je chitdren(i i
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Introduction: model emulation

» Data is overwritten

» Liu's model (no weight on edges)

Liu's model Our model

max(n;, Eje Children(i) T ) fi + ni + Zje Children(i) fj
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In-core schedules and the MINMEMORY problem
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The MinMemory problem

MINMEMORY
Given a tree 7 with p nodes, determine the minimum amount of
memory M such that there exists a schedule o(7T, p, M).

MINMEMORY has polynomial-time complexity (Liu'87).

10/ 18



Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree
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There is no constant k such that the best post-order traversal is a
k-approximation.

» Minimum memory
Mmin = M
» Any post-order traversal
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Post-order traversal in the general case

Best bottom-up post-order traversal (Liu'86)

Best post-order traversal is obtained by sorting, at each level,

subtrees in non increasing order of max (MemReq(i)) — fsubroot-
IEsubtree

Post-order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

» Minimum memory
Mmin = M
» Any post-order traversal

Mumin = M+2(n—1)M/n
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Liu’s optimal algorithm (Liu’87)

» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining
schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.
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» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining

schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.

T([A]

[ Schedule : {N, L, O, M, K, H, I,

F,J,G,D,BE, C, A}
Cost sequence : {E(7), A(1)}

Valley segments : {(NA = 6)}

[Schedule : {1, F, J, G, D B}

Cost sequence : {J(5), B(2)}
| Valley segments : {(IB = 3 )}

[ Schedule : {N, L, 0, M, K, H, E, C}
]| Cost sequence : {K(6) ( ), E(5), C(3)}
| Valley segments : {( 4), (1 2

IC =2)}
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» Extends the original pebble game on trees (Tarjan’'80).

» Rationale: Recursive bottom-up algorithm combining

schedules of subtrees.

» Combination based on the notion of Hill-Valley Segments.

T([A]

» Complexity : O(N?)
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MinMem optimal algorithm

» Based on the Explore subroutine
» Rationale: recursively computes the minimum cut of the tree
reachable with a memory of size M in a top-down approach.
» Returns:
> Cut of the subtree
> Schedule of the subtree to the cut
> Next smallest memory peak (impassable hill)
» Gradually increases the memory available for exploration using
previous cut as a shortcut
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Performance of MinMem

180

160

140

120

100

80

60

40

20

o
1)

|-

srl@“)“v’ |

170.4

Sparse Cholesky assembly trees
Runtimes / MinMem using METIS ordering

BMinMem
BBest post-order
OLiu's optimal algorithm
45.9 46.8 45.1
374 45 399 402
Z 315 329
6.5 59 47 6.0 6.3 51 5.7 6.0 8.5 8.4
2mil AR lml] lmll w2 Cml] tml] W LW
o ) Q ) o = ey Fy [ ")
% % 5 % 3 ) % % 3 %
Q ) -4 ) 3, o EY z =3
A 3 % 3 3, Y 2 % %
(S > > N 4 > ‘g \g
£ >

15/ 18



Performance of MinMem

Memory required to process randomly weighted assembly trees

> Keep assembly tree structure.

» Randomly set the weights.

Matrix Optimal | Post-Order | Improvement
tandem_dual METIS agg =1 | 36229.20 46811.40 0.29
onera_dual METIS agg =1 32537.20 41873.00 0.29
poisson3Db METIS agg =1 | 12809.60 17562.60 0.37
poisson3Db METIS agg =4 6812.40 8505.40 0.25
poisson3Db METIS agg =16 | 4389.40 5157.40 0.17
poisson3Db AMD agg =1 14346.80 18703.60 0.30
poisson3Db AMD agg =4 7448.20 8471.00 0.14
poisson3Db AMD agg =16 3504.60 3993.40 0.14
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Conclusion and perspectives

Contributions

v

Post-order traversal can be arbitrarily bad.

> In preliminary experiments, Post-order almost always optimal.
» New optimal top-down algorithm for MINMEMORY.
>

Experimental performance evaluation of Liu, Post-order and
MinMem using real-life sparse Cholesky factorization assembly
trees.

Ongoing work

» Benchmark all algorithms on an extensive collection of sparse
assembly trees.

> Investigate MINIO problem.
Future work
» Extend to DAGs using heuristics.

» Write efficient data replacement policies based on MINIO, in
the context of BlueWaters. 18/ 18
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