
Scheduling applications on GPU
and CPU

"Denis Barthou, Julien Jeager Emmanuel
Jeannot and Minhaj Khan

LaBRI/INRIA Bordeaux Sud-Ouest/ENSEIRB
Runtime Team

Emmanuel.Jeannot@inria.fr

Introduction

• GPU : widespread component of many
computers

• Can accelerate performance

• Appealing device for HPC

Disclaimer

Very, very preliminary work (progress was slower than expected)

Solution for only a part of the problem (suggestion welcome)

No experimental results

GPU

Many cores (448 CUDA Cores for the Tesla)

Simple programming: vector computation

Simple (no) memory management

GPU Vs CPU

Peak performance : GPU better

Disk, network, memory I/O: must be performed by CPU

CUDA model: CPU controls GPU (no memory management)

Depending on the granularity: performance ratio changes (CPU can be
better than GPU for small size data)

Ratio of performance depend on the computation

Unrelated model

CPU+GPU environments

StarPU (http://runtime.bordeaux.inria.fr/StarPU/): unified
framework for executing application on CPU, GPU, SPU, etc.

Streamit (http://groups.csail.mit.edu/cag/streamit/): language for
streaming application

OpenCL: A language for parallel programming of heterogeneous
environments : can derive a DAG from a program

Plasma/Magma (ICL/UTK) : MultiCore/GPU environemnts

Model

• Unrelated model
• Bandwidth different from CPU

to GPU and GPU to CPU
• Computation time of kernels

(task) : very stable
• A task graph:

! Edges 4 values (CPU to CPU,
CPU to GPU, GPU to CPU and
GPU to GPU)

! Vertex 2 values (CPU or GPU)

Problem

Given : m CPUs and n GPUs:
• Allocate tasks to a resource
• Respect constraints
• Minimize makespan (finish time of last task)

Clustering the graph

• Reactivating the old idea [Sarkar 89]:
! Clustering the graph for an unbounded number of resources
! Mapping clusters to GPUs or CPUs to minimize makespan

• Intuition: providing a good clustering should help to built a good
schedule

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

1+4+3
or

4+1+1

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

1+4+3
or

4+1+1

2+4+1
or

1+1+5

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

1+4+3
or

4+1+1

2+4+1
or

1+1+5

2+4+3
or

1+1+1

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

1+4+3
or

4+1+1

2+4+1
or

1+1+5

2+4+3
or

1+1+1

The spaghetti algorithm

Graph Contraction

Notation: C!C/C!G/G!C/G!G

1/5

4/1

4/1

1/4/2/1

1/3/5/1

1/5

4/1

1+4+1
or

4+1+5

1+4+3
or

4+1+1

2+4+1
or

1+1+5

2+4+3
or

1+1+1

1/5

4/1

6/6/7/3
C/G/U/G

The spaghetti algorithm

• We contract the whole graph, until we have two nodes.
• We keep track of each intermediate possible mapping
• We fix the mapping of the star and end-node
• We derive the mapping of each intermediate node

1/5

4/1

6/6/7/3
C/G/I/G

Best mapping:
• C!C: 11
• C!G : 8
• G!C : 13
• G!G : 9
We map the intermediate node

on a GPU

Simple implementation

1 2

4 1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

4 +"

+" 1

1 3

5 1
A= B= C=

Simple implementation

1 2

4 1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

4 +"

+" 1

1 3

5 1
A= B= C=

1/5

4/1

D= 6/6/7/3

Simple implementation

1 2

4 1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

4 +"

+" 1

1 3

5 1
A= B= C=

1/5

4/1

D= 6/6/7/3 D=A*B*C
In the Min/+ algebra

Matrix multiplication in the
min/+ algebra

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

1 3

5 11/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

4 +"

+" 1

1 3

5 11/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

4 +"

+" 1

1 3

5 1

4+1 4+3

5+1 1+1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

1 4

2 1

4 +"

+" 1

1 3

5 1

4+1 4+3

5+1 1+1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

1 4

2 1

4 +"

+" 1

1 3

5 1

4+1 4+3

5+1 1+1

1+4+1
4+5+1

1+4+3
4+1+1

2+4+1
1+5+1

2+4+3
1+1+1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

Matrix multiplication in the
min/+ algebra

1 4

2 1

4 +"

+" 1

1 3

5 1

4+1 4+3

5+1 1+1

1+4+1
4+5+1

1+4+3
4+1+1

2+4+1
1+5+1

2+4+3
1+1+1

1/5

B=4/1

4/1

A=1/4/2/1

C= 1/3/5/1

1/5

4/1

D= 6/6/7/3

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M2=MWM (in the max/* algebra)

-" -" AW2B -"

-" -" -" BW3C

-" -" -" -"

-" -" -" -"

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M2=MWM (in the max/* algebra)

-" -" AW2B -"

-" -" -" BW3C

-" -" -" -"

-" -" -" -"

W2

W3

W4

W1

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M2=MWM (in the max/* algebra)

-" -" AW2B -"

-" -" -" BW3C

-" -" -" -"

-" -" -" -"

AW2B W2

W3

W4

W1

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M2=MWM (in the max/* algebra)

-" -" AW2B -"

-" -" -" BW3C

-" -" -" -"

-" -" -" -"

AW2B

BW3C

W2

W3

W4

W1

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M3=MWM2 : paths of length 3

In General MWMn-1: paths of length n

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M3=MWM2 : paths of length 3

In General MWMn-1: paths of length n

W2

W3

W4

W1

Computation on the whole
graph

A,B,…, Wi: 2 by 2 matrices

W2

W3

W4

W1

A

B

C

-" A -" -"

-" -" B -"

-" -" -" C

-" -" -" -"

M
Adjacency matrix

W1 -" -" -"

-" W2 -" -"

-" -" W3 -"

-" -" -" W4

W
Weight matrix

M3=MWM2 : paths of length 3

In General MWMn-1: paths of length n

AW2BW3C

W2

W3

W4

W1

This also works with
concurrent paths

W2W3

W4

W1

A

C D

B

W2W3

W4

W1

A

C D

B

max(AW3C,BW2D)

Implementation

Algorithm

1. Compute n the length of the longest path

2. Compute Mn (using the correct algebras), keep track of
intermediate decisions.

3. Determine the best mapping depending on the mapping of the
start and end nodes

Advantages:
! Polynomial
! Simple to implement (less bugs, ref. impl)
! Basic operations

Drawbacks:
! Sub-optimal
! Memory costy

Duplication

Enable duplication in case of a join if it provides better makespan.

Results

What does this algorithm
really compute?

What does this algorithm
really compute?

A mapping for:

What does this algorithm
really compute?

A mapping for:

 An unlimited number of GPUs

What does this algorithm
really compute?

A mapping for:

 An unlimited number of GPUs

 An unlimited number of CPUs

What does this algorithm
really compute?

A mapping for:

 An unlimited number of GPUs

 An unlimited number of CPUs

 No bottleneck for memory transfer

What does this algorithm
really compute?

A mapping for:

 An unlimited number of GPUs

 An unlimited number of CPUs

 No bottleneck for memory transfer

In practice: almost all tasks are mapped on GPUs…

Scheduling and Load-
balancing

Difficult tasks:

 We make no hypothesis on the ratio CPU/GPU (number
performance, etc.)

Different ideas:

 Change tasks mapping based on this ratio (which tasks?)

 Build cluster, and change cluster mapping (which clusters?)

 Apply a greedy algorithm to perform the scheduling (why no
only do the greedy algorithm?

 Use undetermined tasks (ok, but we do have many).

Undetermined tasks

Basically : CP computing

W3 on CP, what about W2?

In general, the algorithm forces
W2’s mapping

Maybe this mapping has no
influence on the critical path?

W2W3

W4

W1

A

C D

B

max(AW3C,BW2D)

New version of the algorithm

Same as before but:

Determine the influence of the mapping of non-critical tasks

If no influence : this task can later be scheduled on any resources

Requires (probably) to get rid of the max/*, min/+ algebra

Unanswered questions

Efficient scheduling?

Efficient load balancing?

Mapping assuming unlimited resources: really a good idea?

Mid-term between greedy scheduling and (exponential) linear
program

Conclusion

GPU : new resource to execute computation

A real implementation of the urnelated model

Need to take into account memory transfer

A lot of room for interesting scheduling problems

