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Rosebud (Polytechnic Univ. of Valencia):
cluster with 38 cores
2 nodes single-processors, 2 nodes dual-processors, 2 nodes
with 4 dual-core, 2 nodes with 2 dual-core, 2 nodes with 1
quad-core

Hipatia (Polytechnic Univ. of Cartagena):
cluster with 152 cores
16 nodes with 2 quad-core, 2 nodes with 4 quad-core, 2 nodes
with 2 dual-core

Ben-Arabi (Supercomputing Centre of Murcia):
Shared-memory + cluster: 944 cores
Arabi: cluster of 102 nodes with 2 quad-core
Ben: HP Superdome, cc-NUMA with 128 cores
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Ben architecture

Hierarchical composition with crossbar interconnection.
Two basic components: the computers and two backplane crossbars.
Each computer has 4 dual-core Itanium-2 and a controller to connect the CPUs
with the local memory and the crossbar commuters.
The maximum memory bandwidth in a computer is 17.1 GB/s and with the
crossbar commuters 34.5 GB/s.
The access to the memory is non uniform and the user does not control where
threads are assigned.
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Scientific code optimisation

Modelling scientific code

From basic routines...
... to scientific codes
For multicore, clusters, supercomputers

Installation tools and methodology

Using the previous models...
... and empirical analysis for the particular routine and
computational system

Adaptation methodology:

With the model and the empirical study at installation time...
... adapt the software to the entry and system conditions at
running time
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Regional meteorology simulations

Joint work with Sonia Jerez, Juan-Pedro Montávez, Regional
Atmospheric Modelling Group, Univ. Murcia
Sonia Jerez, Juan-Pedro Montávez, Domingo Giménez, Optimizing the execution of a

parallel meteorology simulation code, IEEE IPDPS, 10th Workshop on Parallel and

Distributed Scientific and Engineering Computing, Rome, May 25-29, 2009

MM5: parallel versions with OpenMP and MPI

Optimise the use on multicore systems of the parallel codes
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Regional meteorology simulations: modelling

After the simulation of a period of fixed length (spin-up period,
Ts) the influence of the initial condition is discarded.
The value of Ts depends on each experiment.

Time parallelization:
Divide the period P in Nt subperiods and simulate each
subperiod with the spin-up time Ts :

T =

(

P

Nt
+ Ts

)

t

where t is the cost of the simulation of a unity-length period

Spatial parallelization: Using the PARALLEL CODE that
divides the spatial domain, each portion is solved in a core.
Use Np = NxNy cores for each simulation
The total number of cores is N = NtNp

The cost of a basic operation depends on the parameters:
t = f (Nt , Nx , Ny ) and mesh configuration
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Installation:

A short period of time is simulated for all the possible
combinations of Nt with Np

with a limit: NtNp ≤ 2N

for some trial domains
and different mesh shapes: combinations of Nx and Ny

Execution:

Select the values of Nt , Nx and Ny

tacking into consideration the size and characteristics of the
problem to be solved
with the values t = f (Nt ,Nx ,Ny ) estimated at installation
time for domains close to the current domain
to update the information generated at installation time:



Multicore platforms Scientific code optimisation Modelling basic routines Matrix multiplication

Installation:

A short period of time is simulated for all the possible
combinations of Nt with Np

with a limit: NtNp ≤ 2N

for some trial domains
and different mesh shapes: combinations of Nx and Ny

Execution:

Select the values of Nt , Nx and Ny

tacking into consideration the size and characteristics of the
problem to be solved
with the values t = f (Nt ,Nx ,Ny ) estimated at installation
time for domains close to the current domain
to update the information generated at installation time:



Multicore platforms Scientific code optimisation Modelling basic routines Matrix multiplication

Regional meteorology simulations: results

DEFAUL: uses default parameters

INSTAL: with installation information selects the values which gives
lowest modelled time

INS+EXE: repeats the experiments for the current problem for the
parameter combinations which provide lowest modelled time

EXECUT: repeats installation running for the current domain, and selects
the parameters which give the lowest estimated time

rayo hipatia

Reduction between 25 % and 40 % of the execution time
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Hydrodynamic simulations

Joint work with Francisco López-Castejón, Oceanography Group,
Polytechnic Univ. of Cartagena
Francisco López-Castejón, Domingo Giménez, Auto-optimisation on parallel

hydrodynamic codes: an example of COHERENS with OpenMP for multicore, XVIII

International Conference on Computational Methods in Water Resources, Barcelona,

June 21-24, 2010

Easy parallelisation and optimisation of COHERENS

parallelize each loop separately

with a different number of threads for each loop

select the number of threads in each loop

with information obtained at installation time
and adaptation in the initial iterations
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Simultaneous Equation Models

Joint work with José-Juan López-Esṕın, Univ. Miguel Hernández of
Elche, Antonio M. Vidal, Polytechnic Univ. Valencia
José J. López-Esṕın, Domingo Giménez, Solution of Simultaneous Equations Models

in high performance systems, International Congress on Computational and Applied

Mathematics, Leuven, Belgium, July 5-9, 2010

Use of matrix decompositions to obtain a number of
algorithms with low execution time
Basic operations: QR decomposition, matrix multiplications,
Givens rotations
Two types of parallelism: in the basic operations, and
OpenMP parallelism in the computation of different equations
Model of the execution time to decide the algorithm to use for
an entry and system
Estimation at installation time of the values of the parameters
in the models
Include two-level parallelism
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Parameterised shared-memory metaheuristics

Joint work with José-Juan López-Esṕın, Univ. Miguel Hernández of
Elche, Francisco Almeida, Univ. of La Laguna
Jose-Juan López-Esṕın, Francisco Almeida, Domingo Giménez, A parameterised

shared-memory scheme for parameterised metaheuristics, 10h International Conference

on Computational and Mathematical Methods in Science and Engineering,

Minisymposium on High Performance Computing, Almeŕıa, June 26-30, 2010

Parameterised metaheuristic scheme
facilitates development and tuning of metaheuristics and
hybridation/combination of metaheuristics

Unified parallel shared-memory scheme for metaheuristics
facilitates development of parallel metaheuristics or of their
hybridation/combination

Parameterised parallel shared-memory scheme for
metaheuristics
facilitates optimisation of parallel metaheuristics
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Parameterised shared-memory metaheuristics: results

Applied to obtaining satisfactory Simultaneous Equation
Models given a set of values of variables

Metaheuristics: GRASP, genetic, scatter search,
GRASP+genet., GRASP+SS, Gent.+SS, GRASP+genet.+SS

With different number of threads in each function and
two-level parallelism better results

Arabi Ben
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Other scientific problems

Integral equations to study breaking of microstrip components
Joint work with José-Ginés Picón, Supercomputing Centre
Murcia, and Alejandro Álvarez and Fernando D. Quesada,
Computational Electromagnetism Group Univ. Polytechnic of
Cartagena
Parallelise and optimise code, with nested parallelism and
basic linear algebra routines (zgemv and zgemm)

Bayesian simulations
Joint work with Manuel Quesada, and Asunción
Mart́ınez-Mayoral and Javier Socuellamos, Univ. Miguel
Hernández
Web application to study bayesian distributions, to be installed
on different platforms and with parallelism hidden to the user

Possible collaboration with a company: design of bridges, with
metaheuristics and parallelism, in supercomputer BenArabi
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Modelling basic routines

Joint work with Javier Cuenca, Computer Architecture Department, Univ. of Murcia,

Luis-Pedro Garćıa, Polytechnic Univ. of Cartagena

The goal:

on multicore systems, with OpenMP,

to model routines of high level

by using information obtained from routines of low level

Basic work:

threads generation

loop work distribution

synchronisation

Higher level routines:

matrix-vector multiplication

Jacobi iteration

matrix-matrix multiplciation

Strassen multiplication



Multicore platforms Scientific code optimisation Modelling basic routines Matrix multiplication

Modelling basic routines

Joint work with Javier Cuenca, Computer Architecture Department, Univ. of Murcia,
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Modelling: test routines

R-generate

Creates a series of threads with a fixed quantity of work to do
per thread
To compare the time of creating and managing threads

R-pfor

A simple for loop where there is a significant work inside each
iteration
To compare the time of distributing dynamically a set of
homogeneous tasks

R-barriers

A barrier primitive set after a parallel working area
To compare the times to perform a global synchronisation of
all the threads
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Modelling: systems

P2c (a laptop)
Intel Pentium, 2.8 GHz, with 2 cores.
Compilers: icc 10.1 and gcc 4.3.2.

A4c

Alpha EV68CB, 1 GHz, with 4 cores.
Compilers: cc 6.3 and gcc 4.3.

X4c

Intel Xeon, 3 GHz, with 4 cores.
Compilers: icc 10.1 and gcc 4.2.3.

X8c (a node of Hipatia)
Intel Xeon, 2 GHz, with 8 cores.
Compilers: icc 10.1 and gcc 3.4.6
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Modelling: R-generate

# threads ≤ # cores: TR−generate = PTgen + NTwork

# threads > # cores: TR−generate = PTgen + NTwork
P
C

“

1 +
Tswap

Tcpu

”
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Modelling higher level routines: Jacobi

Estimation of the parameters:
P2c X4c A4c X8c

icc gcc icc gcc cc gcc icc gcc

Tgen(µsec) 75 25 75 25 75 25 75 25
Twork(nsec) 2 2 4 7 3 10 1.5 1.5
Tswap/Tcpu 2 1.5 15 0.8 15 1.8 1 0.4

Substitution of estimated values of the parameters in the
model of the routine:
# threads ≤ # cores:

TJacobi = PTgen + 11
n

2

P
Twork

# threads > # cores:

TJacobi = PTgen + 11
n

2

C
Twork

„

1 +
Tswap

Tcpu

«

Decision of the number of threads and compiler to use in the
solution of the problem.
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Modelling: Jacobi, results
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Modelling: Strassen multiplication

# threads ≤ # cores:

TStrassen = PTgen +
7

4

n3

P
Tmult +

9

2
n2Tadd

TStrassen = PTgen +
49

32

n3

P
Tmult +

63

8

n2

P1
Tadd +

9

2
n2Tadd

# threads > # cores:

TStrassen = PTgen +
7

4

n3

P
Tmult

(

1 +
Tswap

Tcpu

)

+
9

2
n2Tadd

TStrassen = PTgen +
49

32

n3

C
Tmult

(

1 +
Tswap

Tcpu

)

+

63

8

n2

ḿın{P1,C}
Tadd

(

1 +
Tswap

Tcpu

)

+
9

2
n2Tadd
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Modelling higher level routines: Strassen, SP values

P2c X4c A4c X8c
icc gcc icc gcc cc gcc icc gcc

Tgen(µsec) 75 25 75 25 75 25 75 25
Tswap/Tcpu 2+ 7- 0.9+ 0.9+ 0.8+ 0.8+ 6+ 0.5+

0.01P 0.01P 0.3P 0.01P 0.2P 0.02P 0.05P 0.01P
Tadd (µsec) 20+ 20 23+ 30- 40+ 40- 10 10

0.05P 0.3P 0.3P P 0.1P
Tmult(ρsec) 400+ 400+ 140+ 140- 60 60- 100 100

100P 0.1P 10P P 60 0.5P
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Modelling: Strassen, results
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Modelling higher routines: Strassen, results

Problem size 1000

Combination giving the best results:

P2c X4c A4c X8c
compiler gcc gcc gcc gcc

# thr. level 1 7 4 4 7
# thr. level 2 7 1 1 2

Execution time for different values of the parameters:

P2c X4c A4c X8c
PCE 1.19 0.50 0.49 0.16
ORA 1.17 0.49 0.45 0.11
HW 1.37 0.55 0.65 0.12
SW 1.22 1.31 1.20 0.32
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Matrix multiplication on platforms composed of multicore

The goal:

To identify the shape matrix multiplication has in a multicore
as a function of the problem size and the number of threads,
to decide the number of threads to use to obtain the lowest
execution time
To use this information to develop two-level
(OpenMP+BLAS) versions of the multiplication,
and select the number of threads in each level
To use this information to develop three-level
(MPI+OpenMP+BLAS) versions,
and select the number of processes and threads in each level
To use this information to develop heterogeneous/distributed
three-level (MPI+OpenMP+BLAS) versions,
and select the number of processes and its distribution or the
data partition, and in each processor the number of threads in
each level
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Systems, basic components

name architecture icc MKL

rosebud05 4 Itanium dual-core 11.1 10.2
8 cores

rosebud09 1 AMD quad-core 11.1 10.2
4 cores

hipatia8 2 Xeon E5462 quad-core 10.1 10.0
8 cores

hipatia16 4 Xeon X7350 quad-core 10.1 10.0
16 cores

arabi 2 Xeon L5450 quad-core 11.1 10.2
8 cores

ben HP Integrity Superdome 11.1 10.2
128 cores
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Using MKL

The library is multithreaded.

Number of threads estabished with the environment variable
MKL NUM THREADS or in the program with the function
mkl set num threads.

Dynamic parallelism is enabled with MKL DYNAMIC=true or
mkl set dynamic(1). The number of threads to use in
dgemm is decided by the system, and is less or equal to that
established.

To enforce the utilisation of the number of threads, dynamic
parallelism is turned off with MKL DYNAMIC=false or
mkl set dynamic(0).
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MKL, results
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MKL, results

size Seq. Max. Low.

rosebud05
250 0.0081 0.0042 0.0019 (11)

rosebud09
250 0.0042 0.0050 0.0012 (5)

hipatia8
250 0.0035 0.0021 0.0011 (7)
500 0.026 0.0088 0.0056 (9)
750 0.087 0.021 0.017 (9)

arabi
250 0.0080 0.0015 0.0013 (9)
500 0.034 0.063 0.0049 (12)

ben
250 0.021 0.017 0.0014 (10)
500 0.042 0.033 0.0044 (19)
750 0.14 0.063 0.010 (22)
1000 0.32 0.094 0.019 (27)
2000 2.6 0.39 0.12 (37)
3000 8.6 0.82 0.30 (44)
4000 20 1.4 0.59 (50)
5000 40 2.1 1.0 (48)
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Two-level parallelism

It is possible to use two-level parallelism: OpenMP + MKL.
The rows of a matrix are distributed to a set of OpenMP threads
(nthomp).
A number of threads is established for MKL (nthmkl).
Nested parallelism must be allowed, with OMP NESTED=true or
omp set nested(1).

omp set nested(1);
omp set num threads(nthomp);
mkl set dynamic(0);
mkl set num threads(nthmkl);
#pragma omp parallel

obtain size and initial position of the submatrix of A to be
multiplied

call dgemm to multiply this submatrix by matrix B
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Two-level parallelism, results
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Two-level parallelism, conclusions

In Hipatia (MKL version 10.0) the nested parallelism seems to
disable the dynamic selection of threads.

In the other systems, with dynamic assignation the number of
MKL threads seems to be one when more than one OpenMP
threads are running.

When the number of MKL threads is established in the
program bigger speed-ups are obtained.

Normally the use of only one OpenMP thread is preferable.

Only in Ben to use a higher number of OpenMP threads is a
good option. Speed-ups between 1.2 and 1.8 are obtained
with 16 OpenMP and 4 MKL threads.
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Two-level parallelism, results

size MKL 2-levels Sp.

250 0.0014 (10) 0.0014 (1-10) 1.0
500 0.0044 (19) 0.0043 (4-11) 1.0
750 0.010 (22) 0.0095 (4-11) 1.1
1000 0.019 (27) 0.015 (4-10) 1.3
2000 0.12 (37) 0.072 (4-16) 1.6
3000 0.30 (44) 0.18 (4-24) 1.7
4000 0.59 (50) 0.41 (5-16) 1.4
5000 1.0 (48) 0.76 (6-20) 1.3
10000 10 (64) 5.0 (32-4) 2.0
15000 25 (64) 12 (32-4) 2.1
20000 65 (64) 22 (16-8) 3.0
25000 130 (64) 44 (16-8) 3.0
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Two-level parallelism, surface shape

Execution time with matrix size 5000
 only times lower than 1/10 the sequential time

 10

 100Total number of threads  1

 10

Number of threads in the first level

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4
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Matrix multiplication: research lines

Development of a 2lBLAS prototype,

and application to scientific problems

Simple MPI+OpenMP+MKL version

Experiments in large shared-memory (ben), large clusters (arabi), and
heterogeneous (rosebud, ben+arabi)

ScaLAPACK style MPI+OpenMP+MKL version

Determine number of processors, and OpenMP and MKL threads

From the model and empirical analysis or with adaptive algorithm

In heterogeneous platform the number of processes per processor

Heterogeneous ScaLAPACK style MPI+OpenMP+MKL version

Determine volume of data for each processors, and OpenMP and MKL
threads

From the model and empirical analysis or with adaptive algorithm
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