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Cholesky inversion, DAGs, critical path, with some scheduling

Our new mission, today:

starting from A, an n–by–n symmetric positive definite matrix, compute A−1

(A−1 is the inverse of A).

Mission cancelled?
“In the vast majority of practical computational problems, it is unnecessary
and inadvisable to actually compute A−1.” — Forsythe, Malcolm and Moler

Mission reengaged ...
The computation of the variance-covariance matrix in statistics requires that the inverse is calculated explicitly.

Methodology: Algorithm by tiles. (Of course!)

Criteria for selection: We keep the granularity of our algorithms constant (the block size), then an algorithm is
said to be better than another if it has a shorter critical path. We count the length in term of tasks (as opposed to
flops).

Related Work: The final algorithm we recommend has already been recommended by Chan and al., SuperMatrix:
a multithreaded runtime scheduling system for algorithms-by-blocks, PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, 2008. See the libflame sofware as well.



Cholesky inversion, DAGs, critical path, with some scheduling

To find the inverse of a symmetric positive definite matrix, A, the standard method is to

1) POTRF compute the Cholesky factorization (lower triangular)

compute lower triangular C such that A = CCT

.	  

=	  A	   A	   L	  

TT	  

L	   such	  that	  

=	  T	   L-‐1	  L	   such	  that	  T	   TRTRI	  

POTRF	  

=	  B	   T	  T	   such	  that	  B	  LAUUM	  

LT	  .	  

B	   A	  =	  (	   )-‐1	  

2) TRTRI compute the inverse of the Cholesky factor

compute T such that T = C−1
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Note: all this is done in place in practice.
Please check that
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Cholesky inversion, DAGs, critical path, with some scheduling

In a new family of algorithms, the tile algorithms, the approach is to “split” a n–by–n matrix into t–by–t tiles and
consider each tile as a scalar. Since we are considering symmetric matrices, we will only concern ourselves with
the lower portion (although the upper portion would be just as valid).

Previous research has shown that it is possible to write efficient and scalable tile algorithms for performing a
Cholesky factorization, a (pseudo) LU factorization, a QR factorization, and computing the inverse of a symmetric
positive definite matrix!



Cholesky inversion, DAGs, critical path, with some scheduling

For the first step in our inversion, we apply the Cholesky factorization to our tiles producing the following directed
acyclic graph (DAG). Within the DAG, each node represents the fine granularity tasks in which the operation can
be decomposed and the edges represent the dependencies among them.

Step 1: Tile Cholesky Factorization (compute L such that
A = LLT );
for j = 1 to t do

for k = 1 to j do
A j, j← A j, j−A j,k ∗AT

j,k (SYRK(j,k)) ;
end
A j, j←CHOL(A j, j) (POTRF(j)) ;
for i = j +1 to t do

for k = 1 to j do
Ai, j← Ai, j−Ai,k ∗AT

j,k (GEMM(i,j,k)) ;
end

end
for i = j +1 to t do

Ai, j← Ai, j/AT
j, j (TRSM(i,j)) ;

end
end

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2] 1-DTRSM-3-0 [2]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3] 1-DGEMM-2-1-0 [3] 1-DGEMM-3-1-0 [3]1-DSYRK-2-0 [3] 1-DGEMM-3-2-0 [3] 1-DSYRK-3-0 [3]

1-DTRSM-2-1 [5] 1-DTRSM-3-1 [5]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6] 1-DGEMM-3-2-1 [6] 1-DSYRK-3-1 [6]

4 1

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 2

1-DPOTRF-3 [10]

6 3

7 1

8 1

9 1

10 1

It is relatively straight forward to translate an algorithm from LAPACK to obtain a ready-to-be-executed tile
algorithm. Note that for the right-looking and bordered variant of the Cholesky factorization (POTRF), we obtain
the same DAG.



Cholesky inversion, DAGs, critical path, with some scheduling

To perform the matrix inversion, we can apply this same method to each step. Thus the three DAGs representing
each step in the inversion for a matrix composed of four tiles could be

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2] 1-DTRSM-3-0 [2]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3] 1-DGEMM-2-1-0 [3] 1-DGEMM-3-1-0 [3]1-DSYRK-2-0 [3] 1-DGEMM-3-2-0 [3] 1-DSYRK-3-0 [3]

1-DTRSM-2-1 [5] 1-DTRSM-3-1 [5]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6] 1-DGEMM-3-2-1 [6] 1-DSYRK-3-1 [6]

4 1

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 2

1-DPOTRF-3 [10]

6 3

7 1

8 1

9 1

10 1

2-DTRTRI-1 [1]

2-DTRMM-R-2-1 [2]2-DTRMM-R-3-1 [2] 2-DTRMM-R-4-1 [2]

1 1

2 3

2-DTRSM-L-2-1 [3]

2-DGEMM-3-1-2 [4] 2-DGEMM-4-1-2 [4]

3 1

2-DTRTRI-2 [4]

2-DTRMM-R-3-2 [5]2-DTRSM-L-3-1 [5] 2-DTRMM-R-4-2 [5]

2-DGEMM-4-1-3 [6]

4 3

5 3

2-DTRSM-L-3-2 [6]

2-DGEMM-4-2-3 [7]2-DTRTRI-3 [7]

2-DTRMM-R-4-3 [8]

2-DTRSM-L-4-1 [7]

6 2

2-DTRSM-L-4-2 [8]

7 3

2-DTRSM-L-4-3 [9]

2-DTRTRI-4 [10]

8 2

9 1

10 1

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2]

3-DLAUMM-1 [4]

1 1

2 1

3-DTRMM-1-0 [3] 3-DSYRK-2-0 [3]

3-DSYRK-2-1 [5]

3-DLAUMM-2 [7]

3 2

3-DGEMM-1-0-2 [4]

3-DTRMM-2-0 [5]

3-DSYRK-3-0 [4] 4 3

3-DTRMM-2-1 [6]

3-DGEMM-1-0-3 [5]

3-DGEMM-2-0-3 [6]

3-DTRMM-3-0 [7]

5 3

3-DSYRK-3-1 [6]

3-DSYRK-3-2 [8]

3-DLAUMM-3 [10]

3-DGEMM-2-1-3 [7]

3-DTRMM-3-1 [8]

6 3

3-DTRMM-3-2 [9]

7 3

8 2

9 1

10 1

POTRF : L← chol(A) TRTRI : T← L−1 LAUUM : A−1← TT T
(Step 1) (Step 2) (Step 3)

The operations are performed in-place, i.e., the data is overwritten. Note that different variants of the same opera-
tion may produce different DAGs.
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Criteria for selection: We keep the granularity of our algorithms constant (the block size), then an algorithm is
said to be better than another if it has a shorter critical path. We count the length in term of tasks (as opposed to
flops).

How to change the critical path?

POTRF: Almost1 no way. Game over! (1: associativity and the commutativity of the GEMMs)

Upper and Lower: No diversity here as well.

1. Mathematical formulation of algorithm

• TRTRI: Algorithmic variants can produce different DAGs resulting in shorter critical paths and/or better
pipelining. For example, variants for TRTRI are dependent upon whether we compute T (which we want to
be L−1 such that

LT = I or T L = I.

(Since LL−1 = L−1L = I, both derivations are valid.)

• TRTRI and LAUUM: The in-place formulation is like a “shell game”. There are a lot of formulation possi-
ble.

• POTRF, TRTRI and LAUUM: Commutativity and associativity within the GEMMs may be used to alter
the dependencies in such a way to reduce the critical path.

2. Compiler technology

• POTRF+TRTRI+LAUUM: Instead of performing the steps sequentially, we pipeline (or interleave) the en-
tire algorithm. Note: we will see that the best variants for POTRF+TRTRI+LAUUM is not POTRF, followed
by the best variant for TRTRI, followed by the best variant for LAUUM!

• TRTRI and LAUUM: Substituting out-of-place for in-place algorithms removes anti-dependencies (write-
after-read) through the use of temporary buffers (array renaming).

• POTRF, TRTRI and LAUUM: DOANY: Loop reversal (expressing commutativity), associativity.



Cholesky inversion, DAGs, critical path, with some scheduling

We have analyzed one variant for POTRF, six variants for TRTRI and three variants for LAUUM.
(Many more variants exists!)

Here are nice pictures for variants of TRTRI with t = 4. We play different shell games with in place.

2-DTRTRI-1 [1]

2-DTRMM-R-2-1 [2]2-DTRMM-R-3-1 [2] 2-DTRMM-R-4-1 [2]

1 1

2 3

2-DTRSM-L-2-1 [3]

2-DGEMM-3-1-2 [4] 2-DGEMM-4-1-2 [4]

3 1

2-DTRTRI-2 [4]

2-DTRMM-R-3-2 [5]2-DTRSM-L-3-1 [5] 2-DTRMM-R-4-2 [5]

2-DGEMM-4-1-3 [6]

4 3

5 3

2-DTRSM-L-3-2 [6]

2-DGEMM-4-2-3 [7]2-DTRTRI-3 [7]

2-DTRMM-R-4-3 [8]

2-DTRSM-L-4-1 [7]

6 2

2-DTRSM-L-4-2 [8]

7 3

2-DTRSM-L-4-3 [9]

2-DTRTRI-4 [10]

8 2

9 1

10 1

Variant 1: Critical Path = 10 (=3t-2)

2-DTRSM-L-1-0 [1]

2-DTRTRI-1 [7]

2-DGEMM-2-0-1 [2] 2-DGEMM-3-0-1 [2]

2-DTRSM-R-1-0 [3]

1 1

2 2

2-DTRSM-L-2-1 [3] 2-DTRSM-L-2-0 [3]

2-DGEMM-3-1-2 [4] 2-DGEMM-3-0-2 [4]

2-DTRTRI-0 [7]

3 3

2-DTRTRI-2 [7]

2-DTRSM-R-2-1 [5] 2-DTRSM-R-2-0 [5]2-DTRSM-L-3-2 [5]2-DTRSM-L-3-1 [5] 2-DTRSM-L-3-0 [5]

4 2

5 5

2-DTRTRI-3 [6] 2-DTRSM-R-3-2 [6]2-DTRSM-R-3-1 [6] 2-DTRSM-R-3-0 [6] 6 4

7 3

Variant 2: Critical Path = 7 (=2t-1)

2-DTRSM-R-1-0 [1]

2-DTRTRI-0 [2]2-DGEMM-2-0-1 [2] 2-DGEMM-3-0-1 [2]

2-DTRSM-L-1-0 [3]

1 6

2 3

2-DTRSM-L-2-1 [4]

2-DGEMM-3-0-2 [3]

2-DTRSM-L-2-0 [4]

2-DGEMM-3-1-2 [3]

2-DTRTRI-1 [4]

2-DTRSM-R-2-0 [1] 2-DTRSM-R-3-0 [1]2-DTRSM-R-2-1 [1]

2-DTRSM-L-3-2 [4] 2-DTRSM-L-3-1 [4]

2-DTRTRI-2 [5]

2-DTRSM-R-3-1 [1]2-DTRSM-R-3-2 [1]

2-DTRSM-L-3-0 [4]

2-DTRTRI-3 [5]

3 3

4 6

5 2

Variant 3: Critical Path = 5 (=t+1)
Variant 4 (resp. 5 and 6) has the same DAG as variant 1 (resp. 2 and 3) but instead of starting from top left corner
and ending bottom right, it starts from bottom right and ends up top left. It is obtained from considering LL−1 = I
instead of L−1L = I.



Cholesky inversion, DAGs, critical path, with some scheduling

We have analyzed one variant for POTRF, six variants for TRTRI and three variants for LAUUM.
(Many more variants exists!)
If we perform the steps for the inversion in a sequential manner, then given the following results we would choose
POTRF, TRTRI v3 (or v6) and LAUUM v1 (or v2 or v3) and settle with 7t−3.

Algorithm Variant CP length
POTRF 3t-2
TRTRI 1 3t-2

2 2t-1
3 t+1
4 3t-2
5 2t-1
6 t+1

LAUUM 1 3t-2
2 3t-2
3 3t-2

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2] 1-DTRSM-3-0 [2]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3] 1-DGEMM-2-1-0 [3] 1-DGEMM-3-1-0 [3]1-DSYRK-2-0 [3] 1-DGEMM-3-2-0 [3] 1-DSYRK-3-0 [3]

1-DTRSM-2-1 [5] 1-DTRSM-3-1 [5]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6] 1-DGEMM-3-2-1 [6] 1-DSYRK-3-1 [6]

4 1

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 2

1-DPOTRF-3 [10]

6 3

7 1

8 1

9 1

10 1

POTRF: 3t−2

2-DTRSM-R-1-0 [1]

2-DTRTRI-0 [2]2-DGEMM-2-0-1 [2] 2-DGEMM-3-0-1 [2]

2-DTRSM-L-1-0 [3]

1 6

2 3

2-DTRSM-L-2-1 [4]

2-DGEMM-3-0-2 [3]

2-DTRSM-L-2-0 [4]

2-DGEMM-3-1-2 [3]

2-DTRTRI-1 [4]

2-DTRSM-R-2-0 [1] 2-DTRSM-R-3-0 [1]2-DTRSM-R-2-1 [1]

2-DTRSM-L-3-2 [4] 2-DTRSM-L-3-1 [4]

2-DTRTRI-2 [5]

2-DTRSM-R-3-1 [1]2-DTRSM-R-3-2 [1]

2-DTRSM-L-3-0 [4]

2-DTRTRI-3 [5]

3 3

4 6

5 2

TRTRI v3: t +1

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2]

3-DLAUMM-1 [4]

1 1

2 1

3-DTRMM-1-0 [3] 3-DSYRK-2-0 [3]

3-DSYRK-2-1 [5]

3-DLAUMM-2 [7]

3 2

3-DGEMM-1-0-2 [4]

3-DTRMM-2-0 [5]

3-DSYRK-3-0 [4] 4 3

3-DTRMM-2-1 [6]

3-DGEMM-1-0-3 [5]

3-DGEMM-2-0-3 [6]

3-DTRMM-3-0 [7]

5 3

3-DSYRK-3-1 [6]

3-DSYRK-3-2 [8]

3-DLAUMM-3 [10]

3-DGEMM-2-1-3 [7]

3-DTRMM-3-1 [8]

6 3

3-DTRMM-3-2 [9]

7 3

8 2

9 1

10 1

LAUUM v1: 3t−2

Total 7t−3
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By pipelining (or interleaving) the multiple steps of the inversion algorithm, we can reduce the length of the critical
path even further. Taking POTRF, TRTRI v3 and LAUUM v1, we obtain 3t +6.

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2] 1-DTRSM-3-0 [2]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3] 1-DGEMM-2-1-0 [3] 1-DGEMM-3-1-0 [3]1-DSYRK-2-0 [3] 1-DGEMM-3-2-0 [3] 1-DSYRK-3-0 [3]

1-DTRSM-2-1 [5] 1-DTRSM-3-1 [5]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6] 1-DGEMM-3-2-1 [6] 1-DSYRK-3-1 [6]

4 1

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 2

1-DPOTRF-3 [10]

6 3

7 1

8 1

9 1

10 1

2-DTRSM-R-1-0 [1]

2-DTRTRI-0 [2]2-DGEMM-2-0-1 [2] 2-DGEMM-3-0-1 [2]

2-DTRSM-L-1-0 [3]

1 6

2 3

2-DTRSM-L-2-1 [4]

2-DGEMM-3-0-2 [3]

2-DTRSM-L-2-0 [4]

2-DGEMM-3-1-2 [3]

2-DTRTRI-1 [4]

2-DTRSM-R-2-0 [1] 2-DTRSM-R-3-0 [1]2-DTRSM-R-2-1 [1]

2-DTRSM-L-3-2 [4] 2-DTRSM-L-3-1 [4]

2-DTRTRI-2 [5]

2-DTRSM-R-3-1 [1]2-DTRSM-R-3-2 [1]

2-DTRSM-L-3-0 [4]

2-DTRTRI-3 [5]

3 3

4 6

5 2

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2]

3-DLAUMM-1 [4]

1 1

2 1

3-DTRMM-1-0 [3] 3-DSYRK-2-0 [3]

3-DSYRK-2-1 [5]

3-DLAUMM-2 [7]

3 2

3-DGEMM-1-0-2 [4]

3-DTRMM-2-0 [5]

3-DSYRK-3-0 [4] 4 3

3-DTRMM-2-1 [6]

3-DGEMM-1-0-3 [5]

3-DGEMM-2-0-3 [6]

3-DTRMM-3-0 [7]

5 3

3-DSYRK-3-1 [6]

3-DSYRK-3-2 [8]

3-DLAUMM-3 [10]

3-DGEMM-2-1-3 [7]

3-DTRMM-3-1 [8]

6 3

3-DTRMM-3-2 [9]

7 3

8 2

9 1

10 1

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2]1-DTRSM-2-0 [2]1-DTRSM-3-0 [2]

2-DTRSM-R-1-0 [4]2-DTRSM-R-2-0 [4]2-DTRSM-R-3-0 [4]

2-DTRTRI-0 [5]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3]1-DGEMM-2-1-0 [3]1-DGEMM-3-1-0 [3] 1-DSYRK-2-0 [3]1-DGEMM-3-2-0 [3]1-DSYRK-3-0 [3]

2-DTRSM-L-1-0 [9]

2-DGEMM-2-0-1 [8]2-DGEMM-3-0-1 [8]

3-DLAUMM-0 [6]

1-DTRSM-2-1 [5]1-DTRSM-3-1 [5]

2-DTRSM-R-2-1 [7]2-DTRSM-R-3-1 [7]

2-DTRTRI-1 [10]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6]1-DGEMM-3-2-1 [6]1-DSYRK-3-1 [6]

4 4

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 3

2-DTRSM-L-2-1 [12]

2-DGEMM-3-1-2 [11]

3-DSYRK-1-0 [10]

3-DTRMM-1-0 [11]

3-DLAUMM-1 [12]

2-DTRSM-R-3-2 [10]

2-DTRSM-L-2-0 [12]

2-DTRTRI-2 [13]

1-DPOTRF-3 [10]

2-DGEMM-3-0-2 [11]

6 4

7 3

3-DSYRK-2-0 [13]3-DSYRK-2-1 [13]

3-DLAUMM-2 [15]

8 3

2-DTRSM-L-3-2 [12]

3-DGEMM-1-0-2 [13]

3-DTRMM-2-0 [14]3-DTRMM-2-1 [14]

2-DTRSM-L-3-0 [12]2-DTRSM-L-3-1 [12]

2-DTRTRI-3 [13]

9 2

10 4

11 3

3-DGEMM-2-0-3 [15]3-DGEMM-2-1-3 [15]

3-DSYRK-3-2 [16]

3-DTRMM-3-2 [17]

3-DSYRK-3-0 [14]3-DGEMM-1-0-3 [14]

3-DTRMM-3-0 [16]

3-DSYRK-3-1 [14]

3-DTRMM-3-1 [16]

3-DLAUMM-3 [18]

12 6

13 5

14 5

15 3

16 3

17 1

18 1

Sequential(25): 7t−3 Pipelined(18): 3t +6
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Consider that taking POTRF, TRTRI v1 and LAUUM v1 sequentially provides us with a ciritcal path of length
9t−6, but the pipelined version has a critical path of length 3t +2 which is shorter than our previous combination.

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2]1-DTRSM-3-0 [2]

2-DTRTRI-1 [3]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3] 1-DGEMM-2-1-0 [3]1-DGEMM-3-1-0 [3]

2-DTRMM-R-2-1 [4]

1-DSYRK-2-0 [3]1-DGEMM-3-2-0 [3]

2-DTRMM-R-3-1 [4]

1-DSYRK-3-0 [3]

2-DTRMM-R-4-1 [4]

3-DLAUMM-0 [5]1-DTRSM-2-1 [5]1-DTRSM-3-1 [5] 2-DTRSM-L-2-1 [5]

2-DTRTRI-2 [6]

1-DPOTRF-2 [7]

3 7

1-DSYRK-2-1 [6]1-DGEMM-3-2-1 [6] 2-DGEMM-3-1-2 [6]1-DSYRK-3-1 [6] 2-DGEMM-4-1-2 [6]

4 4

2-DTRMM-R-3-2 [7]

3-DSYRK-1-0 [6]

3-DLAUMM-1 [8]

2-DTRMM-R-4-2 [7]

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 4

3-DTRMM-1-0 [7]

2-DTRSM-L-3-1 [8]2-DTRSM-L-3-2 [8]

2-DTRTRI-3 [9]

1-DPOTRF-3 [10]

2-DGEMM-4-1-3 [9]

6 7

2-DGEMM-4-2-3 [9] 3-DSYRK-2-0 [9]3-DGEMM-1-0-2 [9]3-DSYRK-2-1 [9]

3-DLAUMM-2 [11]

7 4

2-DTRMM-R-4-3 [10] 3-DTRMM-2-0 [10]

2-DTRSM-L-4-1 [11]

3-DSYRK-3-0 [12]

8 4

3-DTRMM-2-1 [10]

2-DTRSM-L-4-2 [11] 2-DTRSM-L-4-3 [11]

2-DTRTRI-4 [12] 3-DGEMM-1-0-3 [12]

9 7

3-DGEMM-2-0-3 [12]3-DSYRK-3-1 [12] 3-DGEMM-2-1-3 [12] 3-DSYRK-3-2 [12]

3-DLAUMM-3 [14]

10 4

3-DTRMM-3-0 [13]3-DTRMM-3-1 [13]

11 4

3-DTRMM-3-2 [13]

12 7

13 3

14 1

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2]1-DTRSM-2-0 [2]1-DTRSM-3-0 [2]

2-DTRSM-R-1-0 [4]2-DTRSM-R-2-0 [4]2-DTRSM-R-3-0 [4]

2-DTRTRI-0 [5]

1-DPOTRF-1 [4]

1 1

2 3

1-DSYRK-1-0 [3]1-DGEMM-2-1-0 [3]1-DGEMM-3-1-0 [3] 1-DSYRK-2-0 [3]1-DGEMM-3-2-0 [3]1-DSYRK-3-0 [3]

2-DTRSM-L-1-0 [9]

2-DGEMM-2-0-1 [8]2-DGEMM-3-0-1 [8]

3-DLAUMM-0 [6]

1-DTRSM-2-1 [5]1-DTRSM-3-1 [5]

2-DTRSM-R-2-1 [7]2-DTRSM-R-3-1 [7]

2-DTRTRI-1 [10]

1-DPOTRF-2 [7]

3 6

1-DSYRK-2-1 [6]1-DGEMM-3-2-1 [6]1-DSYRK-3-1 [6]

4 4

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 3

2-DTRSM-L-2-1 [12]

2-DGEMM-3-1-2 [11]

3-DSYRK-1-0 [10]

3-DTRMM-1-0 [11]

3-DLAUMM-1 [12]

2-DTRSM-R-3-2 [10]

2-DTRSM-L-2-0 [12]

2-DTRTRI-2 [13]

1-DPOTRF-3 [10]

2-DGEMM-3-0-2 [11]

6 4

7 3

3-DSYRK-2-0 [13]3-DSYRK-2-1 [13]

3-DLAUMM-2 [15]

8 3

2-DTRSM-L-3-2 [12]

3-DGEMM-1-0-2 [13]

3-DTRMM-2-0 [14]3-DTRMM-2-1 [14]

2-DTRSM-L-3-0 [12]2-DTRSM-L-3-1 [12]

2-DTRTRI-3 [13]

9 2

10 4

11 3

3-DGEMM-2-0-3 [15]3-DGEMM-2-1-3 [15]

3-DSYRK-3-2 [16]

3-DTRMM-3-2 [17]

3-DSYRK-3-0 [14]3-DGEMM-1-0-3 [14]

3-DTRMM-3-0 [16]

3-DSYRK-3-1 [14]

3-DTRMM-3-1 [16]

3-DLAUMM-3 [18]

12 6

13 5

14 5

15 3

16 3

17 1

18 1

(14): 3t +2 (POTRF+TRTRIv1+LAUUMv1) (18): 3t +6 (POTRF+TRTRIv3+LAUUMv1)

Note: Cholesky has a critical path of 3t−2 therefore the whole inversion (3t +2) is obtained for “four additional
tasks more”. This is quite a feat!2.

2: there are some assumptions pending ...
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Array renaming (removing anti-dependencies)

Many of the dependencies within the DAG are a result of needing to preserve the data to allow other tasks to
complete before the data can be overwritten.

For example, within LAUUM (Step 3), we have the following dependency:

SYRK(3,2) → TRMM(3,2) → LAUUM(3)

+
T

T

T

LAUUM(3) :

TRMM(3,2) :

SYRK(3,2) :

By providing a copy of the green and blue tiles, we can execute each of these tasks at the same time.



Cholesky inversion, DAGs, critical path, with some scheduling

Array renaming (removing anti-dependencies)

By using a temporary working array, we can remove these dependencies such that many tasks can run at the
same time (this technique is called array renaming in compilation). In comparison to our previous algorithm,
we call this out-of-place.

This technique provides a much higher scalability.
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Array renaming (removing anti-dependencies)

By using a temporary working array, we can remove these dependencies such that many tasks can run at the
same time (this technique is called array renaming in compilation). In comparison to our previous algorithm,
we call this out-of-place.

This technique provides a much higher scalability.

Comparing the DAGs for LAUUM. . .

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2]

3-DLAUMM-1 [4]

1 1

2 1

3-DTRMM-1-0 [3] 3-DSYRK-2-0 [3]

3-DSYRK-2-1 [5]

3-DLAUMM-2 [7]

3 2

3-DGEMM-1-0-2 [4]

3-DTRMM-2-0 [5]

3-DSYRK-3-0 [4] 4 3

3-DTRMM-2-1 [6]

3-DGEMM-1-0-3 [5]

3-DGEMM-2-0-3 [6]

3-DTRMM-3-0 [7]

5 3

3-DSYRK-3-1 [6]

3-DSYRK-3-2 [8]

3-DLAUMM-3 [10]

3-DGEMM-2-1-3 [7]

3-DTRMM-3-1 [8]

6 3

3-DTRMM-3-2 [9]

7 3

8 2

9 1

10 1

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2] 3-DLAUMM-1 [2]

1 7

2 5

3-DSYRK-2-0 [3] 3-DSYRK-2-1 [3] 3-DLAUMM-2 [3]

3-DTRMM-1-0 [1]

3-DGEMM-1-0-2 [2]

3-DGEMM-1-0-3 [3]

3-DTRMM-2-0 [1]

3-DGEMM-2-0-3 [2]

3-DTRMM-2-1 [1]

3-DGEMM-2-1-3 [2]

3-DTRMM-3-0 [1] 3-DTRMM-3-1 [1] 3-DTRMM-3-2 [1]

3 4

3-DSYRK-3-0 [4] 3-DSYRK-3-1 [4] 3-DSYRK-3-2 [4] 3-DLAUMM-3 [4] 4 4

in-place : 3t−2 out-of-place : t
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Array renaming (removing anti-dependencies)

By using a temporary working array, we can remove these dependencies such that many tasks can run at the
same time (this technique is called array renaming in compilation). In comparison to our previous algorithm,
we call this out-of-place.

This technique provides a much higher scalability.

Comparing the DAGs for LAUUM. . .

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2]

3-DLAUMM-1 [4]

1 1

2 1

3-DTRMM-1-0 [3] 3-DSYRK-2-0 [3]

3-DSYRK-2-1 [5]

3-DLAUMM-2 [7]

3 2

3-DGEMM-1-0-2 [4]

3-DTRMM-2-0 [5]

3-DSYRK-3-0 [4] 4 3

3-DTRMM-2-1 [6]

3-DGEMM-1-0-3 [5]

3-DGEMM-2-0-3 [6]

3-DTRMM-3-0 [7]

5 3

3-DSYRK-3-1 [6]

3-DSYRK-3-2 [8]

3-DLAUMM-3 [10]

3-DGEMM-2-1-3 [7]

3-DTRMM-3-1 [8]

6 3

3-DTRMM-3-2 [9]

7 3

8 2

9 1

10 1

3-DLAUMM-0 [1]

3-DSYRK-1-0 [2] 3-DLAUMM-1 [2]

1 7

2 5

3-DSYRK-2-0 [3] 3-DSYRK-2-1 [3] 3-DLAUMM-2 [3]

3-DTRMM-1-0 [1]

3-DGEMM-1-0-2 [2]

3-DGEMM-1-0-3 [3]

3-DTRMM-2-0 [1]

3-DGEMM-2-0-3 [2]

3-DTRMM-2-1 [1]

3-DGEMM-2-1-3 [2]

3-DTRMM-3-0 [1] 3-DTRMM-3-1 [1] 3-DTRMM-3-2 [1]

3 4

3-DSYRK-3-0 [4] 3-DSYRK-3-1 [4] 3-DSYRK-3-2 [4] 3-DLAUMM-3 [4] 4 4

in-place : 3t−2 out-of-place : t

Although it would seem that the combination of pipelining with array renaming should give us better performance,
from our experimental results, this was not always the case.
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Loop reversal.

+
+
+

TRSM

GEMM

GEMM

GEMM

TRMM
A

ss
oc

ia
tiv

e
an

d
C

om
m

ua
ta

tiv
e

The GEMM operations are commutative, meaning we can execute them in any order in the same fashion as a
DOANY loop.
We have represented the good loop here for TRTRIv4 since the saumon and purple tiles would be available way
before the green and blue tiles.
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Loop reversal.

Here is TRTRIv4 with t = 5 where the loop ordering has not been optimized to take advantage of the commutativity.
(The loop goes UP.)

Step 2: Tile Triangular Inversion of L
(compute L−1);
for j = t−1 to 0 do

for i = t−1 to j +1 do
Ai, j← Ai,i ∗Ai, j (TRMM(i,j)) ;
for k = j +1 to i−1 do

Ai, j← Ai, j +Ai,k ∗Ak, j
(GEMM(i,j,k)) ;

end
end
for i = j +1 to t−1 do

Ai, j←−Ai, j/A j, j (TRSM(i,j)) ;
end
A j, j← T RINV (A j, j) (TRTRI(j)) ;

end

TRTRI(5)

TRMML(5,1) TRMML(5,2) TRMML(5,3)TRMML(5,4)

GEMM2(5,1,2)

GEMM2(5,2,3)

GEMM2(5,3,4)

TRSM2(5,4)

GEMM2(5,1,4)

GEMM2(5,2,4)

TRTRI(4)

TRMML(4,1)TRSM2(5,1)

TRMML(4,2)TRSM2(5,2)

TRMML(4,3)TRSM2(5,3)

GEMM2(4,1,2)

GEMM2(4,2,3)

TRSM2(4,3)

TRTRI(3)

GEMM2(5,1,3)

GEMM2(4,1,3)

TRMML(3,1)TRSM2(4,1)

TRMML(3,2)TRSM2(4,2)

GEMM2(3,1,2)

TRSM2(3,2)

TRTRI(2)

TRMML(2,1) TRSM2(3,1)

TRSM2(2,1)

TRTRI(1)

Critical path : 19 = t2− t−1
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Loop reversal.

The same algorithm (TRTRIv4, t = 5), but the indexing on the loops has been altered to fully take advantage of
the commutativity. (The loop goes DOWN.)

Step 2: Tile Triangular Inversion of L
(compute L−1);
for j = t−1 to 0 do

for i = t−1 to j +1 do
Ai, j← Ai,i ∗Ai, j (TRMM(i,j)) ;
for k = i−1 to j +1 do

Ai, j← Ai, j +Ai,k ∗Ak, j
(GEMM(i,j,k)) ;

end
end
for i = j +1 to t−1 do

Ai, j←−Ai, j/A j, j (TRSM(i,j)) ;
end
A j, j← T RINV (A j, j) (TRTRI(j)) ;

end

TRTRI(5)

TRMML(5,1)TRMML(5,2) TRMML(5,3)TRMML(5,4)

GEMM2(5,1,4)

GEMM2(5,1,3)

GEMM2(5,1,2)

GEMM2(5,2,4)

GEMM2(5,2,3)

GEMM2(5,3,4)

TRSM2(5,4)

TRTRI(4)

TRMML(4,1)TRMML(4,2) TRMML(4,3) TRSM2(5,3)

GEMM2(4,1,3)

GEMM2(4,1,2)

GEMM2(4,2,3)

TRSM2(4,3)

TRTRI(3)

TRMML(3,1)TRMML(3,2)TRSM2(4,2)

TRSM2(5,2)

GEMM2(3,1,2)

TRSM2(3,2)

TRTRI(2)

TRMML(2,1) TRSM2(3,1)

TRSM2(4,1)

TRSM2(5,1)

TRSM2(2,1)

TRTRI(1)

Critical path : 13 = 3t−2
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Experimental results
We do not have tuned the scheduler (e.g. LOCALITY flag), no hint.

Using a dynamic scheduler, we compared the effects of loop reversal and array renaming.
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Note: on NUMA architecture, we did not manage to get speed up with array renaming. (More precisely, we
managed to get great slowdown ... )
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TRTRIv4: Comparison of variant UU (t2− t−1) and variant UD (3t−2)
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CHOLINV: Comparison of variant 312 (3t +2) and variant 341 (9t−6)
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CHOLINV 312: Comparison of with interleaving and no interleaving
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Experimental results

Using a dynamic scheduler, our experiments consistently achieved significantly better performance than ve-
cLib, ScaLAPACK and LAPACK libraries.
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CHOLINV: performance results
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CHOLINV: performance results
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Note: the top of the y-axis is about 40% of the peak performance.
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Mission accomplished?

Criteria for selection. We keep the granularity of our algorithms constant (the block size), then an algorithm is
said to be better than another if it has a shorter critical path. We count the length in term of tasks (as opposed to
flops).

Some thoughts: Is our criterion relevant after all?

1. Same analysis with flops!

2. The critical path is nice because we can compute it but this is not the whole story in term of parallelism.

3. We are often bounded by the bandwidth as opposed to the parallelism. (Need to model caches.)

4. But yes! Our criterion is a start and we do understand experimental results better thanks to it.

The main messages.

1. We are able at the algorithm level to “change” the DAG of an application.3

2. Existing compiler techniques can be used in our work. Since the granularity of our tasks is “huge” (relatively
to a few flops), compilers/schedulers have many more opportunities to “think” about the right thing to do.

Other research in that vein.
We consider the QR factorization of (tall and skinny) matrix as a reduction. We can then play with the reduction
tree to optimize for the underlying architecture, or what needs to be done after with the tree (apply QT , compute
Q, nothing.)

Our goal was to provide a good DAG

and to leave the rest as a scheduling problem!

3: please read: to provide algorithmic formulations with shorter critical path
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Implementing Communication-Optimal Parallel and Sequential QR Factorizations

When only R is wanted 

pr
oc
es
se
s 

4me 

R0(0) (  ) QR (  ) 

A0 

R0(1) (  ) 
QR (  ) 

R0(0) 
R1(0) 

R1(0) (  ) QR (  ) 

A1 

R2(0) (  ) QR (  ) 

A2 

R2(1) (  ) 
QR (  ) 

R2(0) 
R3(0) 

R3(0) (  ) QR (  ) 

A3 

R (  ) 
QR (  ) 

R0(1) 
R2(1) 

Implementing Communication-Optimal Parallel and Sequential QR Factorizations

When only R is wanted: The 
MPI_Allreduce 

In the case where only R is wanted, instead of construc4ng our own tree, one can simply use 
MPI_Allreduce with a user defined opera4on. The opera4on we give to MPI is basically the 
Algorithm 2. It performs the opera4on: 

    

This binary opera4on is associa3ve and this is all MPI needs to use a user‐defined opera4on on 
a user‐defined datatype. Moreover, if we change the signs of the elements of R so that the 
diagonal of R holds posi4ve elements then the binary opera4on Rfactor becomes 
commuta3ve.  

The code becomes two lines: 

 lapack_dgeqrf( mloc, n, A, lda, tau, &dlwork, lwork, &info ); 

 MPI_Allreduce( MPI_IN_PLACE, A, 1, MPI_UPPER, 

  LILA_MPIOP_QR_UPPER, mpi_comm); 

QR (    ) R1 
R2 

R 

Implementing Communication-Optimal Parallel and Sequential QR Factorizations

Flat	  tree	  –	  cri+cal	  path	  =	  p	  Binary	  tree	  –	  cri+cal	  path	  =	  (log2(p)+1)	  
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Cholesky inversion, DAGs, critical path, with some scheduling
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Cholesky inversion, DAGs, critical path, with some scheduling

New mission!

Let us look at:
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Cholesky inversion, DAGs, critical path, with some scheduling

We consider a n–by–n matrix with nb–by–nb tiles, and set n = t ∗nb.
We take for unit of flops nb3/3.
This makes n and nb disappears from our problem.

The number total of flops in Cholesky is t3 (nb3/3).
The length of the critical path is 9t−10 (nb3/3).

Therefore on p threads, the execution time of Cholesky is at least

max(
t3

p
,9t−10 ).

This is our first lower bound for any execution time. (So in particular for the optimal execution time.)
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lower bound #1

Note: the expected speedup is therefore less than this dashed line. (The lower bound in time becomes a upper
bound in speedup.)



Cholesky inversion, DAGs, critical path, with some scheduling

How well does this lower bound perform?

Let us try some scheduling heuristics!

We consider three strategies:

1. max list schedule with priority given to the task with the maximum flops in all of its children (and itself),

2. rand list schedule with random tasks selection

3. min list schedule with priority given to the task with the minimum flops in all of its children (and itself),

Obviously, strategy min is not a good idea! We hope it gives a sense of what the worse list schedule can be.
Note for the max and min strategies, we have the (convenient) explicit formulae

POTRF i priority(i, t) = (t− i)3,

GEMM ijk priority(i, j,k, t) = (t− j)3 +3( j− i)(2t− i− j−3)+6( j− k),
SYRK ij priority(i, j, t) = (t− i)3 +3(i− j),
TRSM ij priority(i, j, t) = (t− j)3 +3( j− i)(2t− i− j−1).



Cholesky inversion, DAGs, critical path, with some scheduling

We consider three strategies:

1. max list schedule with priority given to the task with the maximum flops in all of its children (and itself),

2. rand list schedule with random tasks selection

3. min list schedule with priority given to the task with the minimum flops in all of its children (and itself),
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If we are not happy with this 40% discrepancy between the lower bound and the upper bound, we have two choices
... either find a greater lower bound or find a lower upper bound ... or both ...



Cholesky inversion, DAGs, critical path, with some scheduling

1-DPOTRF-0 [1]

1-DTRSM-1-0 [2] 1-DTRSM-2-0 [2] 1-DTRSM-3-0 [2]

1-DPOTRF-1 [4]

1 1

2 3
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3 6
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4 1

1-DTRSM-3-2 [8]

1-DSYRK-3-2 [9]

5 2

1-DPOTRF-3 [10]

6 3

7 1

8 1

9 1

10 1



Cholesky inversion, DAGs, critical path, with some scheduling

Forward list schedule t = 8 and p = 30.
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Reverse “list schedule” t = 8 and p = 30.
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t = 8
Length of the critical path: 82

We compare two strategies: list sched-
ule forward and list schedule reverse.

Since there is too many processors (30)
in either case (forward and backward),
the list schedule does not need a strat-
egy to go through.

We see that forward “needs” more
processors than reverse.

Note the reverse “list schedule” is not a
list schedule ...



Cholesky inversion, DAGs, critical path, with some scheduling

Forward list schedule t = 8 and p = 30 Reverse “list schedule” t = 8 and p = 30.
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If a task k starts in time step j of the forward simulation, this implies that it cannot be started any sooner than time
step j. (For any number of processors, for any scheduling strategies.)

Conversely, if a task k ends in time step j of the reverse simulation, this implies that it cannot be ended any sooner
than time step endofrun− j. (For any number of processors, for any scheduling strategies.)

In some sense the forward simulation represents the best parallelism that you can have at the start, the reverse
simulation represents the best parallelism that you can have at the end.



Cholesky inversion, DAGs, critical path, with some scheduling

Forward list schedule t = 8 and p = 30
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If a task k starts in time step j of the forward simulation, this implies that it cannot be started any sooner than time
step j. (For any number of processors, for any scheduling strategies.)

Therefore, if
∀i = 1, . . . , j, wF(i) < p,

we can increase our lower bound

from
t3

p
to

t3−∑
k
i=1 wF( j)
p

+ k.

In other words, in this case, it is best (and legitimate) to count the contribution of step i as 1 as to count it as
wF(i)/p.

So, for example, for Cholesky, since the first step is always one task, it is best to count it in execution time as 1 as
1/p.

The same idea applies for the reverse schedule.
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Note: rand reverse is “random reverse list schedule” strategy.
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If we are not happy with this 40% 10% discrepancy between the lower bound and the upper bound, we have two
choices ... either find a greater lower bound or find a lower upper bound ... or both ...
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The same approach can be done for Cholesky inversion:
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There is an interesting case to extend our lower bound (#2) for the case of POTRF+TRTRIv4+LAUMMv2. In this
case, the DAG is a succession of three diamonds. We can extend our methodology to this case as well.
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Not quite yet there ... Even for nb = 750, we note that the bandwidth is not negligible. The application is actually
latency bounded (as opposed to parallelism bounded).
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Related items.

1. the “reverse” idea has been used to provide a greater lower bound however this idea can also be used to obtain
competitive scheduling strategy. Since the width of the representation of the DAG is smaller there is less
opportunity for “mistake” by starting by the end, there is less choice, more good decision. In particular a
random reverse scheduling strategy is very competitive.

2. we also have studied the problem of finding the minimum of processors in which we can realize the critical
path length.

3. we have extended our lower bound approach to consecutive diamonds (useful for matrix inversion for exam-
ple.)

TODO list.

1. we would like to study other scheduling strategies as FIFO Cholesky left looking, FIFO Cholesky right look-
ing , etc. (Just in case.)

2. perform some exhaustive search for finding the optimal scheduling strategies for small cases.

3. incorporate communication and caches in the models, lower bounds and the strategies!


