
1

Parallel Greedy Matching
Algorithms

Fredrik Manne
Department of Informatics

University of Bergen, Norway

Rob Bisseling, University of Utrecht
Md. Mostofa Patwary, University of Bergen

2

Outline

• Background on the matching problem
• Parallel matrix – vector multiplication
• A new parallel greedy matching algorithm
• Experiments
• Conclusion

3

Combinatorial Scientific Computing

• Study of discrete algorithms in scientific and engineering
applications (as opposed to continuous mathematics).

• Graph and geometric algorithms are fundamental tools.

• Has emerged as a separate field within scientific
computing.

• Significantly affects performance of scientific
computations

4

The Matching Problem

• Given graph G(V,E)
• Select set of independent edges such that either

– S has maximum cardinality or
– Weight of S is maximum

5

Application in CSC: Weighted Bipartite Matching

Given n by n matrix A
Use pivoting to increase weight of diagonal elements
• Increases numerical stability for direct solvers
• Increases convergence rate for iterative solvers

7

10 7

1

7

10 7

1 1

7 10

7

Greedy solution: Optimal:

Weight = 11 Weight = 14

7

10

7

1

As a matching problem:

Rows Columns

i

j

k l

i

j

k l

i

j

k l

i

j

k

l

6

Application in CSC: Graph Partitioning

… …

Coarse Graph

Initial Graph Final Partition

Coarse Partition

Contraction Re
fin

em
en

t

Coarse
Partitioning

Measure of similarity

Contraction of “similar” vertices

Weighted Matching Problem

7

The Greedy Approach

While there are edges left
Add “best” remaining edge (v,w) to S
Remove (v,w) and all edges incident on v and w.

W(S) � ½W(opt)

Parallelization: Difficult since each decision depends on previous choices

Several variations depending on how “best” is defined.

Examples:

Unweighted case: Best = edge with lowest degree endpoint

Weighted case: Best = edge with maximum weight.

8

The Karp – Sipser algorithm

While there are edges left in G
If there exists a vertex v of degree one

e = (v, neighbor of v)
else

e = random remaining edge
S = S U {e}
Remove e and all edges incident on e from G

Observation: Works well in practice

9

Sparse Matrix-vector multiplication

• Repeatedly compute xk+1 = Axk

• A is large, sparse and symmetric

X1
X2
X3
X4
X5

A

× = xk+1

xk

10

Parallel Sparse Matrix-vector multiplication

X1 + X2 + X3 + X4 + X5

• xi must be sent to wherever there is an element from column Ai

• Every element in row j of A must be reduced to processor P(j)

= X2

Each xi is initially stored on some processor P(i)

11

Data distribution

• Objectives
– Split every row and column of A on as few processors as

possible
– Assign an equal number of non-zeros to each processor.

• Can be done using graph partitioning on the adjacency graph of A:

A

1

2

3 4

5

G(A)

12

But things can go bad..

• For any 1-D bisection of nxn
arrowhead matrix:
– nnz = 3n-2
– Volume � (3/4)n

13

2d Hypergraph based partitioning

Any non-zero can be mapped to any processor

Note aij and aji are mapped to the same processor

14

Partitioning software

• Several high quality software packages:

– Mondriaan, University of Utrecht

– PaToH, Ohio State

– Zoltan, Sandia Laboratories

– Scotch, INRIA

– hMetis, University of Minnesota

15

Parallelizing the Karp-Sipser algorithm
• Algorithm uses Bulk Synchronous Processing.

• Uses 2d partitioning of edges, with adjacency matrix of G partitioned using
Mondriaan such that aij and aji are mapped to the same processor

• Each vertex ”owned” by one processor which is responsible for matching it

• A processor tries to match s of its vertices in each round before
communicating
– First, match degree one vertices and then random matches.

• Local matches (v,w) can be executed immediately

• If w is non-local Pi must send a matching request to owner of w.

16

Algorithm executed on Pi

While there are edges left in G
Process incoming messages
For i = 1,s

If there exists unmatched vertex v of degree one owned by Pi
e = (v, w) where w is the neighbor of v

else
e = random remaining edge (v,w) where Pi owns v

If w is owned by Pi
Add (v,w) to solution
Initiate removal of edges incident on v and w from G

Exchange messages with other processors

17

Message processing

• Main message types:
– Matching request
– Vertex has been removed
– Matching succeeded (Failures are handled implicitly)

• A vertex can receive multiple matching request.
– Only one succeeds, the rest will fail.
– A processor will never try to match to the same

vertex twice

• Total number of messages sent is

0.25 SpMV(A) <= Vol(Matching) <= 1.5 SpMV(A)

18

Data structures

• The owner of a node i has a list of the processors that owns edges
incident on vertex i

• Each owner of an edge (i,j) knows which processor owns i.

i jP0 P2

P1

P0 P1

P1

P2

i : …,j,…
.
j: …,i,…

These data structures are dynamically updated as
the algorithm progresses

19

Experiments

• Test sets from real-world matrices, small world
matrices and Erdös-Renyi random matrices

• Performed on IBM pSeries 575 with 104 nodes

• Implemented in C++ using BSPonMPI

20

Relative communication volume
for SpMV when using 2D partitioning vs 1D on 32 processors

0

0,2

0,4

0,6

0,8

1

1,2

rw
1

rw
2

rw
3

rw
4

rw
5

rw
6

rw
7

rw
8

rw
9

rw
10

rw
11

rw
12

rw
13

rw
14 sw

1
sw

2
sw

3
er

1
er

2
er

3

Numbers for communication volume in matching are similar

21

Speed up of matching code when using 64 processors

0

10

20

30

40

50

60

70

80

rw
1

rw
2

rw
3

rw
4

rw
5

rw
6

rw
7

rw
8

rw
9

rw
10

rw
11

rw
12

rw
13

rw
14 sw

1
sw

2
sw

3
er

1
er

2
er

3

2d

1d

22

Observations

• 2d outperforms 1d partitioning on complex problems but 1d almost

never outperforms 2d.

• Quality of matching tends to degrade with
– Increasing number of processors
– Increasing s-value
– Complexity of problems

• It should be possible to expand the 2d approach to other greedy
algorithms such as for weighted matching and graph coloring.

