Parallel Greedy Matching
Algorithms

Fredrik Manne
Department of Informatics
University of Bergen, Norway

Rob Bisseling, University of Utrecht
Md. Mostofa Patwary, University of Bergen

Outline

Background on the matching problem
Parallel matrix — vector multiplication

A new parallel greedy matching algorithm
Experiments

Conclusion

Combinatorial Scientific Computing

Study of discrete algorithms in scientific and engineering
applications (as opposed to continuous mathematics).

Graph and geometric algorithms are fundamental tools.

Has emerged as a separate field within scientific
computing.

Significantly affects performance of scientific
computations

The Matching Problem

« Given graph G(V,E)

« Select set of independent edges such that either
— S has maximum cardinality or
— Weight of Sis maximum

.

Application in CSC: Weighted Bipartite Matching

Given nby n matrix A
Use pivoting to increase weight of diagonal elements
* Increases numerical stability for direct solvers

Greedy solution: Optimal:

- Increases convergence rate for iterative solvers 107 7 10
il 7 1 j 1 7
kK | k |
Weight = 11 Weight = 14

As a matching problem:

| 10 7
1
[0 Kk
7 1
J
Rows 7 7 Columns
j
k | 1

Application in CSC: Graph Partitioning

Initial Graph Final Partition
%? &
% ? &

C N
<. 7 o8
S s
- Coarse ‘
Partitioning
Coarse Graph Coarse Partition

Measure of similarity

——————— ,—;M‘:\“““ q Weighted MatChing PrOblem

Contraction of “similar” vertices

The Greedy Approach

While there are edges left
Add “best” remaining edge (v,w)to S
Remove (v,w) and all edges incident on vand w.

Several variations depending on how “best” is defined.

Examples:
Unweighted case: Best = edge with lowest degree endpoint
Weighted case: Best = edge with maximum weight.

W(S) 2 AWV (opt)

Parallelization: Difficult since each decision depends on previous choices

7

The Karp — Sipser algorithm

While there are edges leftin G
If there exists a vertex v of degree one
e = (v, neighbor of v)
else
e = random remaining edge
S =S U{e}
Remove e and all edges incident on e from G

Q @)

~N J

Observation: Works well in practice g

Sparse Matrix-vector multiplication

« Repeatedly compute xk+7 = Axk
« Ais large, sparse and symmetric

X X X,
X X X) &

X X x Xy = Xk+
X X X,
X X XX Xe

Parallel Sparse Matrix-vector multiplication

Each x; is initially stored on some processor F(i)

X

X, +

X

XX

Xy +

Xq +

X, +

XX [X[X

* x; must be sent to wherever there is an element from column A;

» Every element in row j of A must be reduced to processor P(j)

10

Data distribution

« QObjectives

— Split every row and column of A on as few processors as
possible

— Assign an equal number of non-zeros to each processor.

« Can be done using graph partitioning on the adjacency graph of A:

X X
X X X

X X S
X X

X X X X 4

But things can go bad..

HXXAKXKXXXAKXXXXXX

). 9.9.9.9.9.9.9.9.9.9.4

X * For any 1-D bisection of nxn
arrowhead matrix:

—nnz = 3n-2

— Volume = (3/4)n

12

2d Hypergraph based partitioning

Any non-zero can be mapped to any processor

X
X
X
X

HKAXXX

X X
XX
KXAXKXXXX

Note a; and a; are mapped to the same processor .

Partitioning software

Several high quality software packages:

— Mondriaan, University of Utrecht
— PaToH, Ohio State

— Zoltan, Sandia Laboratories

— Scotch, INRIA

— hMetis, University of Minnesota

14

Parallelizing the Karp-Sipser algorithm

Algorithm uses Bulk Synchronous Processing.

Uses 2d partitioning of edges, with adjacency matrix of G partitioned using
Mondriaan such that a; and a; are mapped to the same processor

Each vertex "owned” by one processor which is responsible for matching it

A processor tries to match s of its vertices in each round before
communicating

— First, match degree one vertices and then random matches.
Local matches (v,w) can be executed immediately

If wis non-local P; must send a matching request to owner of w.

15

Algorithm executed on P;

While there are edges left in G
Process incoming messages
Fori=1,s
If there exists unmatched vertex v of degree one owned by P,
e = (v, w) where wis the neighbor of v
else
e = random remaining edge (v,w) where P, owns v
If wis owned by P,
Add (v,w) to solution
Initiate removal of edges incident on v and w from G

Exchange messages with other processors

16

Message processing

Main message types:
— Matching request
— Vertex has been removed
— Matching succeeded (Failures are handled implicitly)

A vertex can receive multiple matching request.
— Only one succeeds, the rest will fail.
— A processor will never try to match to the same
vertex twice

Total number of messages sent is
0.25 SpMV(A) <= Vol(Matching) <= 1.5 SpMV/(A)

17

Data structures

« The owner of a node i has a list of the processors that owns edges
incident on vertex i

« Each owner of an edge (i,j) knows which processor owns i.

P, (i) q P
P, P, P,

P,

These data structures are dynamically updated as

the algorithm progresses
18

Experiments

 Test sets from real-world matrices, small world
matrices and Erdos-Renyi random matrices

« Performed on IBM pSeries 575 with 104 nodes

* Implemented in C++ using BSPonMP|

19

Relative communication volume
for SpMV when using 2D partitioning vs 1D on 32 processors

1,2

L . . . 20
Numbers for communication volume in matching are similar

Speed up of matching code when using 64 processors

80
70
60
50
40
30
20 -
10

0 -

@ 2d
| 1d

\

/\
N

J O O O @ & 0 XN Y N fb\
T EFFLEI LIS LS &P

ST S s

21

Observations

« 2d outperforms 1d partitioning on complex problems but 1d almost
never outperforms 2d.

« Quality of matching tends to degrade with
— Increasing number of processors
— Increasing s-value
— Complexity of problems

« |t should be possible to expand the 2d approach to other greedy
algorithms such as for weighted matching and graph coloring.

22

