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Outline

• Background on the matching problem
• Parallel matrix – vector multiplication
• A new parallel greedy matching algorithm
• Experiments
• Conclusion
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Combinatorial Scientific Computing

• Study of discrete algorithms in scientific and engineering 
applications (as opposed to continuous mathematics). 

• Graph and geometric algorithms are fundamental tools.

• Has emerged as a separate field within scientific 
computing.

• Significantly affects performance of scientific 
computations
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The Matching Problem

• Given graph G(V,E)
• Select set of independent edges such that either

– S has maximum cardinality or
– Weight of S is maximum
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Application in CSC: Weighted Bipartite Matching

Given n by n matrix A
Use pivoting to increase weight of diagonal elements
• Increases numerical stability for direct solvers
• Increases convergence rate for iterative solvers
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Application in CSC: Graph Partitioning
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The Greedy Approach

While there are edges left
Add “best” remaining edge (v,w) to S
Remove (v,w) and all edges incident on v and w.

W(S) � ½W(opt)

Parallelization: Difficult since each decision depends on previous choices

Several variations depending on how “best” is defined.

Examples:

Unweighted case: Best = edge with lowest degree endpoint

Weighted case: Best = edge with maximum weight.
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The Karp – Sipser algorithm

While there are edges left in G
If there exists a vertex v of degree one

e = (v, neighbor of v)
else

e = random remaining edge
S = S U {e}
Remove e and all edges incident on e from G

Observation: Works well in practice
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Sparse Matrix-vector multiplication

• Repeatedly compute xk+1 = Axk

• A is large, sparse and symmetric

X1
X2
X3
X4
X5

A

× = xk+1

xk
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Parallel Sparse Matrix-vector multiplication

X1 + X2 + X3 + X4 + X5

• xi must be sent to wherever there is an element from column Ai

• Every element in row j of A must be reduced to processor P(j)

=  X2

Each xi is initially stored on some processor P(i)
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Data distribution

• Objectives
– Split every row and column of A on as few processors as 

possible
– Assign an equal number of non-zeros to each processor.

• Can be done using graph partitioning on the adjacency graph of A:
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But things can go bad..

• For any 1-D bisection of nxn
arrowhead matrix:
– nnz = 3n-2
– Volume � (3/4)n
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2d Hypergraph based partitioning

Any non-zero can be mapped to any processor

Note aij and aji are mapped to the same processor
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Partitioning software

• Several high quality software packages:

– Mondriaan, University of Utrecht

– PaToH, Ohio State

– Zoltan, Sandia Laboratories

– Scotch, INRIA

– hMetis, University of Minnesota
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Parallelizing the Karp-Sipser algorithm
• Algorithm uses Bulk Synchronous Processing.

• Uses 2d partitioning of edges, with adjacency matrix of G partitioned using 
Mondriaan such that aij and aji are mapped to the same processor

• Each vertex ”owned” by one processor which is responsible for matching it

• A processor tries to match s of its vertices in each round before 
communicating
– First, match degree one vertices and then random matches.

• Local matches (v,w) can be executed immediately 

• If w is non-local Pi must send a matching request to owner of w.
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Algorithm executed on Pi

While there are edges left in G
Process incoming messages
For i = 1,s

If there exists unmatched vertex v of degree one owned by Pi
e = (v, w) where w is the neighbor of v

else
e = random remaining edge (v,w) where Pi owns v

If w is owned by Pi
Add (v,w) to solution
Initiate removal of edges incident on v and w from G

Exchange messages with other processors
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Message processing

• Main message types: 
– Matching request
– Vertex has been removed
– Matching succeeded (Failures are handled implicitly)

• A vertex can receive multiple matching request.
– Only one succeeds, the rest will fail.
– A processor will never try to match to the same 

vertex twice

• Total number of messages sent is 

0.25 SpMV(A) <= Vol(Matching) <= 1.5 SpMV(A)
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Data structures

• The owner of a node i has a list of the processors that owns edges 
incident on vertex i

• Each owner of an edge (i,j) knows which processor owns i.

i jP0 P2

P1

P0 P1

P1

P2

i : …,j,…
.
j: …,i,…

These data structures are dynamically updated as 
the algorithm progresses
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Experiments

• Test sets from real-world matrices, small world 
matrices and Erdös-Renyi random matrices

• Performed on IBM pSeries 575 with 104 nodes

• Implemented in C++ using BSPonMPI
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Relative communication volume 
for SpMV when using 2D partitioning vs 1D on 32 processors

0

0,2

0,4

0,6

0,8

1

1,2

rw
1

rw
2

rw
3

rw
4

rw
5

rw
6

rw
7

rw
8

rw
9

rw
10

rw
11

rw
12

rw
13

rw
14 sw

1
sw

2
sw

3
er

1
er

2
er

3

Numbers for communication volume in matching are similar



21

Speed up of matching code when using 64 processors
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Observations

• 2d outperforms 1d partitioning on complex problems but 1d almost

never outperforms 2d.

• Quality of matching tends to degrade with 
– Increasing number of processors 
– Increasing s-value
– Complexity of problems

• It should  be possible to expand the 2d approach to other greedy
algorithms such as for weighted matching and graph coloring.


