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Combinatorial Scientific Computing

Study of discrete algorithms in scientific and engineering
applications (as opposed to continuous mathematics).

Graph and geometric algorithms are fundamental tools.

Has emerged as a separate field within scientific
computing.

Significantly affects performance of scientific
computations



The Matching Problem

« Given graph G(V,E)

« Select set of independent edges such that either
— S has maximum cardinality or
— Weight of Sis maximum

.




Application in CSC: Weighted Bipartite Matching

Given nby n matrix A
Use pivoting to increase weight of diagonal elements
* Increases numerical stability for direct solvers

Greedy solution:  Optimal:
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Application in CSC: Graph Partitioning
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The Greedy Approach

While there are edges left
Add “best” remaining edge (v,w)to S
Remove (v,w) and all edges incident on vand w.

Several variations depending on how “best” is defined.

Examples:
Unweighted case: Best = edge with lowest degree endpoint
Weighted case: Best = edge with maximum weight.
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Parallelization: Difficult since each decision depends on previous choices
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The Karp — Sipser algorithm

While there are edges leftin G
If there exists a vertex v of degree one
e = (v, neighbor of v)
else
e = random remaining edge
S =S U{e}
Remove e and all edges incident on e from G
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Observation: Works well in practice g




Sparse Matrix-vector multiplication

« Repeatedly compute xk+7 = Axk
« Ais large, sparse and symmetric
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Parallel Sparse Matrix-vector multiplication

Each x; is initially stored on some processor F(i)
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* x; must be sent to wherever there is an element from column A;

» Every element in row j of A must be reduced to processor P(j)
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Data distribution

« QObjectives

— Split every row and column of A on as few processors as
possible

— Assign an equal number of non-zeros to each processor.

« Can be done using graph partitioning on the adjacency graph of A:
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But things can go bad..
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X * For any 1-D bisection of nxn
arrowhead matrix:

—nnz = 3n-2

— Volume = (3/4)n
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2d Hypergraph based partitioning

Any non-zero can be mapped to any processor
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Note a; and a; are mapped to the same processor .



Partitioning software

Several high quality software packages:

— Mondriaan, University of Utrecht
— PaToH, Ohio State

— Zoltan, Sandia Laboratories

— Scotch, INRIA

— hMetis, University of Minnesota
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Parallelizing the Karp-Sipser algorithm

Algorithm uses Bulk Synchronous Processing.

Uses 2d partitioning of edges, with adjacency matrix of G partitioned using
Mondriaan such that a; and a; are mapped to the same processor

Each vertex "owned” by one processor which is responsible for matching it

A processor tries to match s of its vertices in each round before
communicating

— First, match degree one vertices and then random matches.
Local matches (v,w) can be executed immediately

If wis non-local P; must send a matching request to owner of w.
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Algorithm executed on P;

While there are edges left in G
Process incoming messages
Fori=1,s
If there exists unmatched vertex v of degree one owned by P,
e = (v, w) where wis the neighbor of v
else
e = random remaining edge (v,w) where P, owns v
If wis owned by P,
Add (v,w) to solution
Initiate removal of edges incident on v and w from G

Exchange messages with other processors
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Message processing

Main message types:
— Matching request
— Vertex has been removed
— Matching succeeded (Failures are handled implicitly)

A vertex can receive multiple matching request.
— Only one succeeds, the rest will fail.
— A processor will never try to match to the same
vertex twice

Total number of messages sent is
0.25 SpMV(A) <= Vol(Matching) <= 1.5 SpMV/(A)
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Data structures

« The owner of a node i has a list of the processors that owns edges
incident on vertex i

« Each owner of an edge (i,j) knows which processor owns i.

P, (i) q P
P, P, P,

P,

These data structures are dynamically updated as

the algorithm progresses
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Experiments

 Test sets from real-world matrices, small world
matrices and Erdos-Renyi random matrices

« Performed on IBM pSeries 575 with 104 nodes

* Implemented in C++ using BSPonMP|
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Relative communication volume
for SpMV when using 2D partitioning vs 1D on 32 processors
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Speed up of matching code when using 64 processors
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Observations

« 2d outperforms 1d partitioning on complex problems but 1d almost
never outperforms 2d.

« Quality of matching tends to degrade with
— Increasing number of processors
— Increasing s-value
— Complexity of problems

« |t should be possible to expand the 2d approach to other greedy
algorithms such as for weighted matching and graph coloring.
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