
Power Aware Scheduling
in

Multicore Systems

Rami Melhem

Department of Computer Science

The University of Pittsburgh

Electricity usage projection

Why power aware scheduling?

It is estimated that 2%

of the US energy

consumption results

from computer systems

(including embedded

and portable devices)

Potential Data Center

Electrical Usage[1]

Historic trend

scenario

Current efficiency

trend scenario

Improved operation

scenario

Best practice

scenario

State of the art

scenario

Historic energy use
Future use

projection

A
n

n
u

al
 e

le
ct

ri
ci

ty
 u

se
 (

b
il

li
o

n
s

K
W

h
/y

ea
r)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

140

120

100

80

60

40

20

0

• Introduction and Motivation

• Scheduling with dynamic voltage and frequency scaling

• Power management in multicores

1) Assuming the Amdahl computational model

2) Assuming structured applications

3) Assuming unstructured applications

• Conclusion

Power Consumption in a Chip

• Dynamic power: Pdynamic ≈ C V2 f + Pind

–C : switch capacitance

–V : supply voltage

– f : operating frequency

• For a given technology, f and V are usually linearly related 

Pdynamic is cubically proportional to the processor’s speed.

• Pind actually depends on V but usually assumed a constant

• Static power: power components that are independent of f

• Two common management techniques:

1) Processor throttling (turn off when not used)

2) Frequency and voltage scaling

Frequency/voltage scaling

• Gracefully reduce performance

• Dynamic power Pd = C f 3 + Pind

• Static power: independent of f. power

Static

power

time

C f 3

Pind

time

When frequency is halved:

• Time is doubled

• The C f 3 component of the energy is divided by 4

• The Pind component of the energy is doubled

Idle time

Frequency/voltage scaling

Slower speed

reduces the C f 3 component of the energy

increases the Pind component of the energy

There is an optimal speed.

More complex when speeds

are discrete

en
er

g
y

Speed (f)

Pind / f

C f 2

total

• Minimize total energy consumption

• Minimize the energy-delay product

– Takes performance into consideration

• Maximize performance given an energy (or power) budget

• Minimize energy given a deadline

• Minimize the maximum temperature

Different goals of power management

E
n
er

g
y
*
d
el

ay

f

Pind / f 2

C f

Static and Dynamic voltage scaling (DVS)*

CPU speed

time

deadline

Smax

Smin

Worst case execution

Remaining time

time

Static

schedule

(power management points)

Dynamic

schedule

Remaining time

*) COLP 2000

Static and Dynamic voltage scaling (DVS)

• Energy is minimum when execution speed is uniform

• Use statistical knowledge of execution time for the

static scheduling rather than worst case execution time

deadline

Smax

Smin

Average case execution

Probability Distribution of Execution Cycles

(a histogram for each task)*

• Can use this knowledge to determine the fraction, βi , of the remaining time,

T, to allocate to the ith task for minimum expected energy consumption.

T

β1T

cycle

probability

WCECACEC

cycle

WCEC

probability

*) ACM Transactions on Computer Systems (2007)

DVS to minimize expected energy

consumption
Offline:

At run time:

β1T

t1

β2(T-t1)

t2

β3(T-t1-t2)

t3

T T

T

β2T
β3T

We will consider three task models:

1) The Amdahl model (perfect parallel sections)

2) Structured computation (streaming applications)

3) Computations with unknown structures

Power Management in Multicores

DVS for multiple cores*

Manage energy by determining:

• The speed for the serial section

• The number of cores used in the

parallel section

• The speed in the parallel section

One core

Two cores

Slow down the

cores

Slow down the

parallel section

To derive a simple analytical model, assume Amdahl’s law:

- p % of computation can be perfectly parallelized.

p

Using more

cores

s

*) TPDS 2010

A model to Study Parallelism, Performance &

Energy Consumption

• Initial assumptions
– Processor cores consume static power (cannot turn off completely)

– Dynamic power proportional to f

– Maximum “relative” processor speed = 1, at which

• Dynamic power = 1

• static power =

• Question 1:

– Find processors’ speeds for minimum energy consumption?

• To find optimal speeds
– Write energy expression, E in terms of t and y

– Solve for t = 0 and y = 0

• May do the same for find the speeds that minimize the Energy-Delay

product

t
y

Example: parallelism is used for energy

(parallel speedup = 1)

when =3

Energy

consumption

t*

s = % of the serial computation

N = # of processors

Usage of the model

• Find processor speeds for minimum energy consumption

• Find effect of static power on optimal energy consumption

• Optimize energy for a given speedup (performance)

An Alternate system model

• Model B: can turn off individual processors

• To minimize energy (or energy-delay), we now need to
– Find the number of processors to use, and

– The processors’ speeds

Machine model B always achieves smaller energy than a sequential machine.

Larger forces the processor to achieve the lowest energy at a higher speed.

Minimum Energy at Different Speed Targets

We will consider three possible task models:

1) The Amdahl model (perfect parallel sections)

2) Structured computation (streaming applications)

• static mapping based on worst case execution

• DVS based on statistical properties and dynamic

slack reclamation

3) Computations with unknown structures

Power Management in Multicores

• Streaming applications are prevalent

– Audio, video, real-time tasks, cognitive

applications

• Constrains:

– Inter-arrival time (T)

– End-to-end delay (D)

• Power aware mapping to CMPs

– Determine the number of cores to use

– Determine speeds

– Account for communication

T

D

Mapping streaming applications to CMPs

• Timing constraints are conventionally

satisfied through load balanced mapping

• The mapping problem is NP hard even

without considering energy

• NP hard when considering energy

– Minimize energy consumption

– Maximize performance for a given energy budget

instance

instance

A

B C

E

D

F

G H I
J

K

A

B

CD

F
E

G
H

I

J
K

Mapping a task graph onto a CMP

Turn OFF some cores and use DVFS

Maximum speed/voltage (fmax)

instance

instance

A

B C

E

D

F

G H I
J

K

A

B C

D

F

E G

H

I

J

K

Medium speed/voltage

Minimum speed/voltage (fmin)

Core turned OFF

A

B C

D

E F G H I

J

A

B C

D

E F

G H I

JLevel 5

Level 2

Level 3

Level 4

Level 1

• Treating each level as a task in linear task graphs, we can use the

linear pipeline schedule as a heuristics for general task graphs

Scheduling General Task Graphs*

Topological

sort

*) ACM Tran Comp. Systems 2007

Scheduling General Task Graphs

• Questions:
– How many stages to use?

– Allotted time for each stage?

– For each stage, how many processors to use?

– For each stage, what’s the mapping?

– For each stage, what’s the speed for each task?

A

B C

D

E F G H I

J

A dynamic programming algorithm*

T1

T2

T3

…

Tn-1

Tn

μ1

μ2

…

μk

WCEC1

WCEC2

WCEC3

WCECn-1

WCECn

f1

f2

…

fm

f1

f2

…

fm

f1

f2

…

fm

Periodic Job

Inter-arrival time: T

Deadline: D > T

*) ACM Tran Comp. Systems 2007

A dynamic programming algorithm

Ti

Tj

…

μ1

μk

…

μk

Ti … Tj

Compute energy

and delay when

Ti , … Tj are

mapped to one

processor

Use recursion to

propagate this

information

May also apply statistical analysis*

T1

T2

T3

…

Tn-1

Tn

μ1

μ2

…

μk

WCEC1

WCEC2

WCEC3

WCECn-1

WCECn

f1

f2

…

fm

f1

f2

…

fm

f1

f2

…

fm

Goal:

Map tasks and

compute speeds

to minimize

worst case energy

consumption

expected energy

consumption

Histogram1

Histogram2

Histogram3

Histogramn-1

Histogramn

*) IEEE Symposium on Industrial Embedded Systems (SIES) 2009

Dynamic slack (idle time) reclamation

μi-1

μi

μi+1

…

B

C

A

It is not always possible to reclaim the

idle time to slow down the processing in

a pipeline.

Example:

• If B finishes early, we cannot use the

idle time

• unless C finishes early and moves into

μi (can slow down the computation of

C).

Effect of Cross-Stage Idle Time Reclamation

With idle time reclamation

Without idle time reclamation

Experiments when initial mapping is done using the worst case

execution time

We will consider three possible task models:

1) The Amdahl model (perfect parallel sections)

2) Structured computation (streaming applications)

• static mapping based on worst case execution

• DVS based on statistical properties and dynamic

slack reclamation

3) Computations with unknown/unspecified structures

Power Management in Multicores

DVS using Machine Learning*

Characterize the execution state of a core by parameters such as

• Rate of instruction execution (IPC)

• # of memory accesses per instruction

• Average memory access time (depends on other threads)

Learn for each state of a core

• The frequency that optimizes your goal

(example goal is energy consumption)

During execution, periodically (every 50μs -10ms)

Estimate the current state (through run-time measurements)

Assume that the future is a continuation of the present

Set the frequency to the best recorded during training

M

M

C

core

L1 $$

core core core

L1 $$ L1 $$ L1 $$

L2 $$ L2 $$ L2 $$ L2 $$

*) Computer Frontiers 2010

Training

Machine Learning Approach

Training Data

Mapping

Function

Runtime

Interval

Measurements

Best

Frequency

Mapping

Function

For training, we use representative workloads and set the

frequencies randomly in each interval to learn as much as possible.

What defines the state of a core?

(Feature Selection)

Start with Raw

Measurements

Cycles

L1 Access

L1 Miss

Average Stall

Instructions

User Instructions

…

Generate

Inverses

Cycles

Cycles-1

L1 Access

L1 Access-1

L1 Miss

L1 Miss-1

…

First Order

Metrics

Multiply

Together

Cycles * L1 Access

Cycles * L1 Access-1

Cycles-1 * L1 Access

Cycles-1 * L1 Access-1

L1 Access * L1 Miss

L1 Access * L1 Miss-1

…

Second Order

Metrics

Second Order Metrics Correlation

(abs)

Cycles * L1 Access-1 0.3

Cycles-1 * L1 Access 0.2

L1 Access * L1 Miss-1 0.15

Cycles * L1 Access 0.1

Cycles-1 * L1 Access-1 0.05

L1 Access * L1 Miss 0.02

Feature Selection:

Correlation Study

Second Order Metrics

Cycles * L1 Access

Cycles * L1 Access-1

Cycles-1 * L1 Access

Cycles-1 * L1 Access-1

L1 Access * L1 Miss

L1 Access * L1 Miss-1

Goal Metric

Energy per

User Instruction

Correlation

0.1

0.3

-0.2

0.05

0.02

0.15

m1

m2

m3

The Mapping Function

• The mapping function can be expressed as a table

• Each table entry represents a unique set of measurements

– Tells us which frequency to choose

(m1,m2,m3) Freq (GHz)

(2.1,3.5,1.8) 0.6

(4.0,1.0,4.0) 1.2

• Tow problems with the table

– Too large (depends on discretization of the measurements)

– Has empty entries (situation not encountered during training)

• Transform the table into a decision tree

• Much smaller

• No blank entries

Decision Tree: Example

m1
> 3

m2
> 1.5

m2
> 0.5

1.0 GHz 0.8 GHz

m3
> 1

0.8 GHz 0.6 GHz

m3
> 1

m1
> 4.5

0.6 GHz 1.0 GHz

m2
> 2

1.2 GHz 1.4 GHz

TF

ex: (m1,m2,m3) =

(2.1,3.5,1.8)

Experimental Validation

• Simics running Ubuntu

• Sample 2s execution

• Simulation parameters:

– 16 in-order cores

• Power Parameters

▫ 5 VF settings

▫ 50μs to 1 ms intervals

▫ Power =

▫ Dynamic = αf
3

▫ Static = βf

▫ Background = γ

• Policies

▫ Table

▫ Decision tree

▫ Greedy (HPCA ’09)

Core L1 $

Core L1 $

L2 $

Energy per (user-instruction)
2

0.6

0.8

1

1.2

1.4

1.6

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 mean

Greedy

Table

Dtree

14% improvement over

baseline

10% improvement over

Greedy

Decision Tree has

no Blank Entries

Decision Tree produces

clustering effect

Conclusion

• Scheduling processor speeds for multiple cores is
challenging!

• Usually has to resort to heuristics to do the initial static
scheduling in realistic settings

• Dynamic slack reclamation is not trivial due to
computation dependences

• Machine learning techniques deal with a complex
problem using statistical methods, rather than heuristics

