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ProDom: a repository of protein domain families

prodom.prabi.fr

I ProDom is a widely used
database of protein domain
families

I ProDom is automatically
built from Uniprot database
using Mkdom2

I Mkdom2 is a sequential
algorithm of quadratic
complexity
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The problem

I Uniprot database size doubling roughly every other year

I 2002 version of ProDom: 2 months

I 2006 version of ProDom: 15 months

I 2010 version of ProDom: > 10 years

The parallelization of Mkdom2 is mandatory to ensure ProDom’s future
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The MkDom2 algorithm
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Approach 1: parallelizing each iteration

Pros

I Leave untouched the nature of the heuristic

Cons

I Each iteration is itself an iterative process

I Iterations are short:
Medium test: 72,413 iterations averaging 0.86 seconds

I Strongly coupled fine grain parallelism
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Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations
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Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

I Variations in query-sequence processing times
Median 2.5 s; Worst-case: 260 s
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Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

I Variations in query-sequence processing times

I Impact on the underlying biological hypothesis
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Prediction of dependences between query-sequences

Solution: All-against-all Blast comparison

I Blast far less stringent than Psi-Blast

I Idea: do not simultaneously run queries from matching
sequences

I May seem to double the overall computation time

I Can be trivially parallelized ⇒ can lower wall-clock time
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Naive Master-worker approach

While Database is not empty do

1. Select the n shortest and non-homologous sequences

2. Send n
p sequences to each of the p workers

3. Gather the n results

4. Update the database

Problems

I No overlap of the work of the master and of the workers

I Variations in query-sequence processing times

I Processor heterogeneity

I Potential communication bottlenecks

I Potentially high computational burden on the master
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Problems and solutions

No overlap master/worker + unpredictable query processing times

I Master compute new batch of sequences when one worker has
processed 50% of its last batch

I A worker receives a share only if it has started processing its
previous batch

Processor heterogeneity

I Work distribution according to initial platform benchmark

Master load and communication bottleneck

I Database update performed on each worker
(not sent by master)

I All communications are asynchronous
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Experimental setup

I MPI Mkdom2

I Initial database (DB) of 556,964 sequences

I Recursively nested subsets DB/2, DB/4 and DB/8

I All-against-all blast search was run with a threshold of 10−4

on the E-value

10/14



Speedup
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I Parallelization efficient up
to 40 processes on DB/8

I The larger the database,
the larger the achievable
speedups

I going from 39 to 79
workers divided the
processing time of DB/8
by 1.11 while that of DB
was divided by 1.72
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Conflict prevention efficiency

Number of workers 1 2 7 31 39 63 79 127
% of conflicts 0.37 0.47 0.70 1.35 1.59 3.13 3.75 5.11

% of conflicts 25
w/o dependency information

Table: Percentage of queries leading to conflicts as a function of the
number of workers, for the processing of DB/8.
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Result stability: comparing parallel and sequential results
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I W1(famseq) : how well is famseq conserved in the parallel
result.

I Good stability, even above maximum speedup.
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Conclusion

I Able to handle huge unpredictable unbalance

I Rather good platform utilization

I Stability of the results w.r.t. the sequential algorithm

I New versions of ProDom built in the near future
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