
Parallel large scale inference
of protein domain families

Daniel Kahn 2,3 Clément Rezvoy 1,3 Frédéric Vivien 2,3

1 ENS de Lyon 2 INRIA 3 Université de Lyon

France

Thursday June 3, 2010

1/14



ProDom: a repository of protein domain families

prodom.prabi.fr

I ProDom is a widely used
database of protein domain
families

I ProDom is automatically
built from Uniprot database
using Mkdom2

I Mkdom2 is a sequential
algorithm of quadratic
complexity

2/14

prodom.prabi.fr


The problem

I Uniprot database size doubling roughly every other year

I 2002 version of ProDom: 2 months

I 2006 version of ProDom: 15 months

I 2010 version of ProDom: > 10 years

The parallelization of Mkdom2 is mandatory to ensure ProDom’s future

3/14



The MkDom2 algorithm

Elimination of short sequences
Iteration i+1

Step 1

Steps 5 and 6 Database update

Step 4 PSI-BLAST search of the query-sequence

No match Matches Match of repeat

Step 3

yes

query-sequence

no

Internal repeat detection

Query-sequence selection
query-sequence

Step 2

Elimination of short sequencesStep 1

Iteration i

4/14



Approach 1: parallelizing each iteration

Pros

I Leave untouched the nature of the heuristic

Cons

I Each iteration is itself an iterative process

I Iterations are short:
Medium test: 72,413 iterations averaging 0.86 seconds

I Strongly coupled fine grain parallelism

5/14



Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

6/14



Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

Run in parallel

6/14



Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

Run in parallel

6/14



Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

I Variations in query-sequence processing times
Median 2.5 s; Worst-case: 260 s

Processing time (s)

F
re

qu
en

cy

0 50 100 150 200 250

1
10

10
00

1e
+

05

6/14



Approach 2: running iterations in parallel

Pros

I Enable to use thousands of cores in parallel

Cons

I Inter-dependences of iterations

I Variations in query-sequence processing times

I Impact on the underlying biological hypothesis

6/14



Prediction of dependences between query-sequences

Solution: All-against-all Blast comparison

I Blast far less stringent than Psi-Blast

I Idea: do not simultaneously run queries from matching
sequences

I May seem to double the overall computation time

I Can be trivially parallelized ⇒ can lower wall-clock time

7/14



Naive Master-worker approach

While Database is not empty do

1. Select the n shortest and non-homologous sequences

2. Send n
p sequences to each of the p workers

3. Gather the n results

4. Update the database

Problems

I No overlap of the work of the master and of the workers

I Variations in query-sequence processing times

I Processor heterogeneity

I Potential communication bottlenecks

I Potentially high computational burden on the master

8/14



Problems and solutions

No overlap master/worker + unpredictable query processing times

I Master compute new batch of sequences when one worker has
processed 50% of its last batch

I A worker receives a share only if it has started processing its
previous batch

Processor heterogeneity

I Work distribution according to initial platform benchmark

Master load and communication bottleneck

I Database update performed on each worker
(not sent by master)

I All communications are asynchronous

9/14



Experimental setup

I MPI Mkdom2

I Initial database (DB) of 556,964 sequences

I Recursively nested subsets DB/2, DB/4 and DB/8

I All-against-all blast search was run with a threshold of 10−4

on the E-value

10/14



Speedup

●

●
●

●

●

●

●

●
● ●

●

●

0 20 40 60 80 100 120

0
5

10
15

20
25

30

Number of worker processes

S
pe

ed
up

I Parallelization efficient up
to 40 processes on DB/8

I The larger the database,
the larger the achievable
speedups

I going from 39 to 79
workers divided the
processing time of DB/8
by 1.11 while that of DB
was divided by 1.72

11/14



Conflict prevention efficiency

Number of workers 1 2 7 31 39 63 79 127
% of conflicts 0.37 0.47 0.70 1.35 1.59 3.13 3.75 5.11

% of conflicts 25
w/o dependency information

Table: Percentage of queries leading to conflicts as a function of the
number of workers, for the processing of DB/8.

12/14



Conflict prevention efficiency

Number of workers 1 2 7 31 39 63 79 127
% of conflicts 0.37 0.47 0.70 1.35 1.59 3.13 3.75 5.11

% of conflicts 25
w/o dependency information

Table: Percentage of queries leading to conflicts as a function of the
number of workers, for the processing of DB/8.

12/14



Result stability: comparing parallel and sequential results

0 20 40 60 80 100 120

0.
85

0.
90

0.
95

1.
00

Number of workers

W
1

I W1(famseq) : how well is famseq conserved in the parallel
result.

I Good stability, even above maximum speedup.

13/14



Conclusion

I Able to handle huge unpredictable unbalance

I Rather good platform utilization

I Stability of the results w.r.t. the sequential algorithm

I New versions of ProDom built in the near future

14/14


	Motivation
	Sequential algorithm
	The parallelization approach
	Experimental evaluation
	Conclusion

