Online optimization of max stretch on clusters

Erik Saule, Doruk Bozdag, Umit Catalyurek

Department of Biomedical Informatics, The Ohio State University {esaule,bozdagd,umit}@bmi.osu.edu

Scheduling in Aussois 2010

Supported by the U.S. DOE, the U.S. National Science Foundation and the Ohio Supercomputing Center

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters $\therefore 1 / 25$

(日) (國) (王) (王)

Outline

Problem Definition

- The max stretch objective
- What's known

2 Approximation Results

- Counter Examples
- First-Come First-Serve
- DASEDF
- Summing up

3 Resource Augmentation

- Faster Machines
- More Machines
- Experimental Validation
- Conclusion

イロト イポト イヨト イヨト

The $P_m | r_i, p_i, online | \max S_i$ problem

Cluster scheduling

A cluster accepts jobs submitted over time. The jobs are independent and uses a single machine. No preemption is allowed.

The $P_m | r_i, p_i, online | \max S_i$ problem

Cluster scheduling

A cluster accepts jobs submitted over time. The jobs are independent and uses a single machine. No preemption is allowed.

The flow time index

The flow-time $F_i = C_i - r_i$ is the classical choice in cluster scheduling. But it is unfair for small jobs since a 10-hours job waiting for an hour as the same weight as a 10-minutes job waiting for an hour.

The $P_m \mid r_i, p_i, online \mid \max S_i$ problem

Cluster scheduling

A cluster accepts jobs submitted over time. The jobs are independent and uses a single machine. No preemption is allowed.

The flow time index

The flow-time $F_i = C_i - r_i$ is the classical choice in cluster scheduling. But it is unfair for small jobs since a 10-hours job waiting for an hour as the same weight as a 10-minutes job waiting for an hour.

The stretch performance index

The stretch $S_i = \frac{C_i - r_i}{p_i}$ normalizes flow-time and corrects the unfairness of flow-time. But makes the scheduling way more difficult. Δ denotes the ratio $\frac{\max p_i}{\min p_i}$.

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc

イロト イヨト イヨト イヨト Online optimization of max stretch on clusters Problem Definition::The max stretch objective 3 / 25

э.

Previous results

Theorem

 $1 | r_i, p_i | \max S_i$ is NP-Complete in the strong sense [BCM98].

Theorem

There is no $\Omega(n^{1-\epsilon})$ approximation algorithm for $1 | r_i, p_i | \max S_i$ for constant ϵ unless P = NP [BCM98].

Theorem

 $1 \mid r_i, p_i, online, pmpt \mid \max S_i \text{ can not be approximated within}$ $\frac{\Delta^{\sqrt{2}-1}}{2} \text{ [LSV08].}$

Theorem

First-Come First-Serve is a Δ -approximation of $1 | r_i, p_i, online, pmpt | \max S_i [LSV08].$

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Problem Definition::What's known $\ 4\ /\ 25$

Outline of the Talk

Problem Definition

- The max stretch objective
- What's known

Approximation Results

- Counter Examples
- First-Come First-Serve
- DASEDF
- Summing up

3 Resource Augmentation

- Faster Machines
- More Machines

Experimental Validation

5 Conclusion

Erik Saule

・ロン ・聞と ・ヨン ・ヨン

 $1 \mid r_i, p_i, online \mid \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.

Proof. (the adversary technique).

A large task enters in the system.

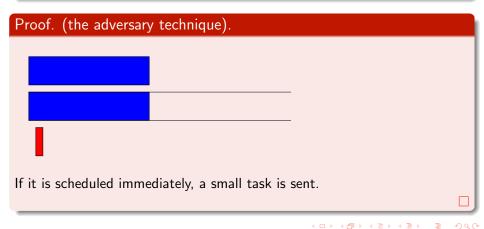
Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc

イロン イヨン イヨン イヨン Online optimization of max stretch on clusters Approximation Results::Counter Examples 6 / 25

3

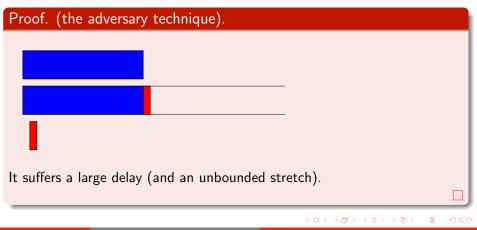
 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.



Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Approximation Results::Counter Examples 6 / 25

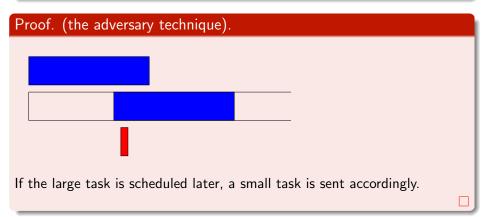
 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.



Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Approximation Results::Counter Examples 6 / 25

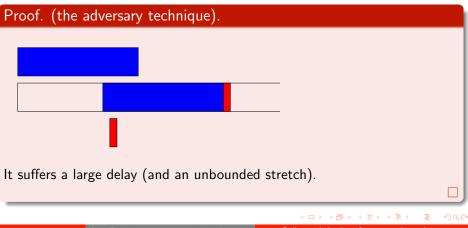
 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.



Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc

 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.



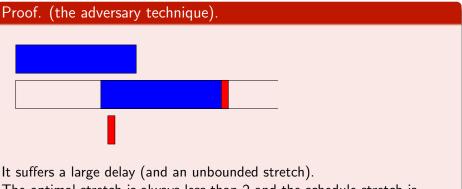
Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Approximation Results::Counter Examples 6 / 25

The online one machine case

Theorem

 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2}$.

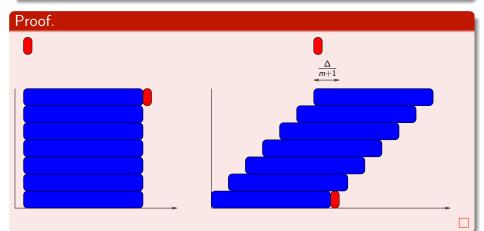


The optimal stretch is always less than 2 and the schedule stretch is always $1+\Delta.$

Erik Saule

The online *m* machines case

Theorem



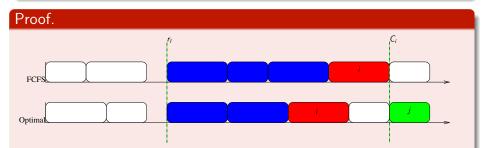
Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Approximation Results::Counter Examples 7 / 25

First-Come First-Serve on one machine

Theorem ([LSV08])

FCFS is a Δ -approximation algorithm for $1|r_i, p_i, online| \max S_i$.



 If optimal has a better stretch for a task (red) then one of the task scheduled between r_l and C_i (the blue tasks) will complete after C_i (green).

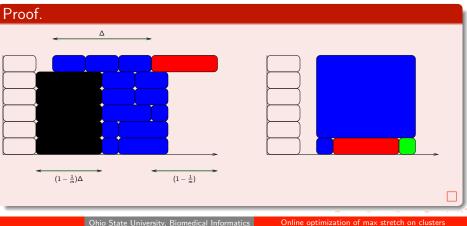
•
$$S_j^* = \frac{C_j^* - r_j}{p_j} \ge \frac{C_i - r_i}{p_j} = \frac{C_i - r_i}{p_i} \frac{p_i}{p_j} = S_j \frac{p_i}{p_j}$$

Erik Saule

First-Come First-Serve on *m* machines

Theorem

FCFS is a $\Delta + (1 - \frac{1}{m})(\Delta + 1)$ -approximation algorithm for $P_m|r_i, p_i, online|maxS_i$.



Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc

Online optimization of max stretch on clusters Approximation Results::First-Come First-Serve 9 / 25

DASEDF(S)

- It targets a maximum stretch S.
- Task *i* must complete before the deadline $D_i = r_i + p_i S$.
- Solves the deadline problem.

∃ 990

DASEDF(S)

- It targets a maximum stretch S.
- Task *i* must complete before the deadline $D_i = r_i + p_i S$.
- Solves the deadline problem.

Earliest Deadline First (EDF)

- Considers the tasks in order of non-decreasing deadline.
- Schedules the tasks as soon as possible.
- If a task starts after its deadline, declares the schedule infeasible.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の々で

DASEDF(S)

- It targets a maximum stretch S.
- Task *i* must complete before the deadline $D_i = r_i + p_i S$.
- Solves the deadline problem.

Earliest Deadline First (EDF)

- Considers the tasks in order of non-decreasing deadline.
- Schedules the tasks as soon as possible.
- If a task starts after its deadline, declares the schedule infeasible.

DASEDF

- Find the smallest maximum stretch S* such that the deadline problem is feasible using a binary search.
- Use that schedule until an other tasks is released.

Erik Saule

Lemma

If a schedule that completes each task *i* before D_i exists, then EDF creates a schedule where each task *i* completes before $D_i + (1 - \frac{1}{m})p_i$.

Lemma

If a schedule that completes each task *i* before D_i exists, then EDF creates a schedule where each task *i* completes before $D_i + (1 - \frac{1}{m})p_i$.

Theorem

DASEDF(S) returns a solution with maximum stretch less than $S + 1 - \frac{1}{m}$ or ensures that no schedule with maximum stretch of S exists.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ 釣々で

Lemma

If a schedule that completes each task *i* before D_i exists, then EDF creates a schedule where each task *i* completes before $D_i + (1 - \frac{1}{m})p_i$.

Theorem

DASEDF(S) returns a solution with maximum stretch less than $S + 1 - \frac{1}{m}$ or ensures that no schedule with maximum stretch of S exists.

Theorem

When DASEDF is invoked, let S^* be the optimal stretch for the tasks in queue. DASEDF returns a solution of stretch $S < S^* + 1$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ 釣々で

Lemma

If a schedule that completes each task *i* before D_i exists, then EDF creates a schedule where each task *i* completes before $D_i + (1 - \frac{1}{m})p_i$.

Theorem

DASEDF(S) returns a solution with maximum stretch less than $S + 1 - \frac{1}{m}$ or ensures that no schedule with maximum stretch of S exists.

Theorem

When DASEDF is invoked, let S^* be the optimal stretch for the tasks in queue. DASEDF returns a solution of stretch $S < S^* + 1$.

Observation

DASEDF is not an online approximation algorithm. Its performance ratio is at least Δ .

Erik Saule

Online optimization of max stretch on clusters Approximation Results::DASEDF 11 / 25

Positive Results

- FCFS is a Δ -approximation algorithm on 1 machine [LSV08].
- FCFS is a $(2\Delta + 1)$ -approximation algorithm on *m* machines.
- DASEDF is a "local" 1-additive-approximation on *m* machines.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ 釣々で

Positive Results

- FCFS is a Δ -approximation algorithm on 1 machine [LSV08].
- FCFS is a $(2\Delta + 1)$ -approximation algorithm on m machines.
- DASEDF is a "local" 1-additive-approximation on m machines.

Negative results

- No approximation better than $\frac{1+\Delta}{2}$ on 1 machine.
- No approximation better than $\frac{1+\frac{\Delta}{m+1}}{2}$ on *m* machines.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ 釣々で

Positive Results

- FCFS is a Δ -approximation algorithm on 1 machine [LSV08].
- FCFS is a $(2\Delta + 1)$ -approximation algorithm on *m* machines.
- DASEDF is a "local" 1-additive-approximation on m machines.

Negative results

- No approximation better than $\frac{1+\Delta}{2}$ on 1 machine.
- No approximation better than $\frac{1+\frac{\Delta}{m+1}}{2}$ on *m* machines.

How to beat Δ ?

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Approximation Results::Summing up $\ 12\ /\ 25$

Outline of the Talk

Problem Definition

- The max stretch objective
- What's known

2 Approximation Results

- Counter Examples
- First-Come First-Serve
- DASEDF
- Summing up

Resource Augmentation

- Faster Machines
- More Machines
- 4 Experimental Validation
- Conclusion

・ロン ・聞と ・ヨン ・ヨン

 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{1+\Delta}{2\rho}$ using a ρ faster machine.

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc
 < □ > < ∃ > < ≥ > < ≥ > < ≥ > < ≥ >
 ≥

 Online optimization of max stretch on clusters Resource Augmentation::Faster Machines
 14 / 25

Resource Augmentation : More machines

Theorem

 $1 \mid r_i, p_i, online \mid \max S_i$ can not be approximated within $\frac{Q \Delta}{\rho+2}$ using ρ machines.

Proof.

Send successively tasks of size Δ , $\sqrt[\ell]{\Delta}^{\rho-1}, \ldots, \sqrt[\ell]{\Delta}, 1$

∋ 990

Resource Augmentation : More machines

Theorem

 $1 | r_i, p_i, online | \max S_i$ can not be approximated within $\frac{\langle t | \Delta}{\rho + 2}$ using ρ machines.

Proof.

Send successively tasks of size Δ , $\sqrt[q]{\Delta}^{\rho-1}, \ldots, \sqrt[q]{\Delta}, 1$

The Split algorithm

The algorithm schedules the tasks of size between $\sqrt[p]{\Delta}^{j}$ and $\sqrt[p]{\Delta}^{j+1}$ on the *j*th copy of the system. The local schedule is done by a classical max stretch algorithm called *ALGO*.

Theorem

If ALGO is an $f(\Delta)$ -approximation on m machines, Split is a $f(\sqrt[\ell]{\Delta})$ -approximation algorithm using ρ m machines.

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Resource Augmentation::More Machines $15\ /\ 25$

In the real life, we don't have ρ times more machines.

Real Split(X, T)

- splits the cluster in two parts :
 - the main part of m X machines.
 - the auxilary part of X machines.
- when a task is released, the scheduling algorithm is run on the main part with the new task.
- if the maximum stretch of the main part is more than T
 - the scheduling algorithm is run on the auxilary part with the new task.
 - the task is allocated to the part that gives the best overall maximum stretch.

Outline of the Talk

Problem Definition

- The max stretch objective
- What's known

2 Approximation Results

- Counter Examples
- First-Come First-Serve
- DASEDF
- Summing up

3 Resource Augmentation

- Faster Machines
- More Machines

Experimental Validation

Conclusion

Erik Saule

・ロン ・聞と ・ヨン ・ヨン

Setting

Instance

300 machines; 20000 tasks

- processing time : uniformly distributed in $[1 : \Delta]$
- release time : exponential inter arrival time of parameter λ

Parameters

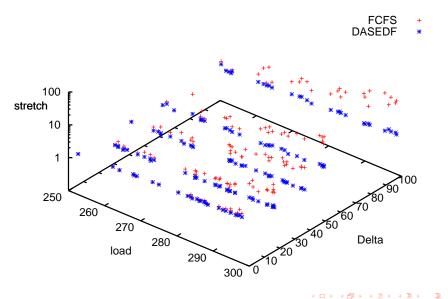
- Δ between 5 and 100
- λ to have a load between 220 and 310. (load : average number of task in the system)
- (20 runs per parameter set)

Reservation scheme

- X : between 1 and 30 machines in the auxilary part
- *T* : stretch threshold between 1.2 and 3 for DASEDF and from 1.2 to 10 for FCFS

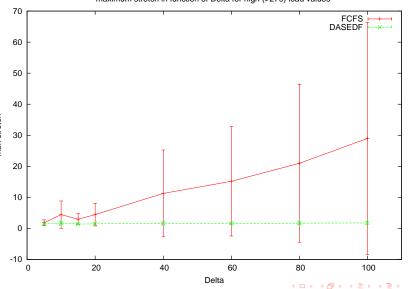
Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Experimental Validation:: 18 / 25



Erik Saule

Result - in function of Δ

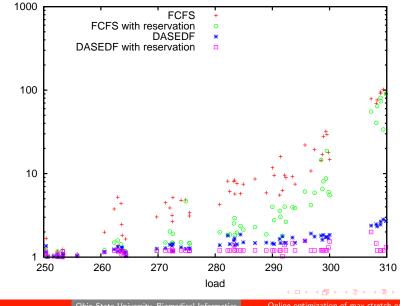


maximum stretch in function of Delta for high (>270) load values

max stretch

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Experimental Validation:: 20 / 25

Results - in function of the load ($\Delta = 100$)



max stretch

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc Online optimization of max stretch on clusters Experimental Validation:: 21 / 25

Outline of the Talk

Problem Definition

- The max stretch objective
- What's known

2 Approximation Results

- Counter Examples
- First-Come First-Serve
- DASEDF
- Summing up

3 Resource Augmentation

- Faster Machines
- More Machines

Experimental Validation

Conclusion

Erik Saule

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc ・ロン ・聞と ・ヨン ・ヨン

Conclusion

Positive results

- FCFS is a $2\Delta + 1$ -approximation on *m* machines.
- DASEDF is a "local" 1-additive-approximation on *m* machines.
- DASEDF beats FCFS in simulations.
- Split is a ρ -augmented. $f(\sqrt[\rho]{\Delta})$ -approximation algorithm.

Conclusion

Positive results

- FCFS is a $2\Delta + 1$ -approximation on *m* machines.
- DASEDF is a "local" 1-additive-approximation on *m* machines.
- DASEDF beats FCFS in simulations.
- Split is a ρ -augmented. $f(\sqrt[\rho]{\Delta})$ -approximation algorithm.

Machine availability is the key

- Approximation lower bounds drops from $\frac{1+\Delta}{2}$ to $\frac{1+\frac{\Delta}{m+1}}{2}$ when the number of machine increases.
- Machine resource augmentation leads to ^{ℓ/Δ}/_{ρ+2} approximation lower bound which is better than having faster machine which leads to ^{1+Δ}/_{2ρ}.
- The reservation scheme helps in simulation.

3

・ロン ・聞と ・ヨン ・ヨン

What to do next?

Improvement

- The performance ratio of FCFS on *m* machines is probably loose.
- Performance ratio of DASEDE ?
- Closing the gap between and $\frac{1+\frac{\Delta}{m+1}}{2}$ (LB) and $2\Delta + 1$ (FCFS). Using a staircase construction to maximize availability perhaps ?
- Select the right parameters for the reservation scheme.

On other models

- Rigid tasks.
- Moldable tasks ("scheduling in Knoxville" 2009 and JSSPP 2010).
- Average stretch.

3

Erik Saule

More information

contact : esaule@bmi.osu.edu visit: http://bmi.osu.edu/hpc/

Research at HPC lab is funded by

Ohio State University, Biomedical Informatics HPC Lab http://bmi.osu.edu/hpc

M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling continuous job streams. In *Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 270–279, 1998.

Arnaud Legrand, Alan Su, and Frédéric Vivien. Minimizing the stretch when scheduling flows of divisible requests. *Journal of Scheduling*, 2008.