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The Pm | ri , pi , online | max Si problem

Cluster scheduling

A cluster accepts jobs submitted over time. The jobs are independent and
uses a single machine. No preemption is allowed.

The flow time index

The flow-time Fi = Ci − ri is the classical choice in cluster scheduling. But
it is unfair for small jobs since a 10-hours job waiting for an hour as the
same weight as a 10-minutes job waiting for an hour.

The stretch performance index

The stretch Si = Ci−ri
pi

normalizes flow-time and corrects the unfairness of
flow-time. But makes the scheduling way more difficult.
∆ denotes the ratio max pi

min pi
.
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Previous results

Theorem

1 | ri , pi | max Si is NP-Complete in the strong sense [BCM98].

Theorem

There is no Ω(n1−ε) approximation algorithm for 1 | ri , pi | max Si for
constant ε unless P = NP [BCM98].

Theorem

1 | ri , pi , online, pmpt | max Si can not be approximated within
∆
√

2−1

2 [LSV08].

Theorem

First-Come First-Serve is a ∆-approximation of
1 | ri , pi , online, pmpt | max Si [LSV08].
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The online one machine case

Theorem

1 | ri , pi , online | max Si can not be approximated within 1+∆
2 .

Proof. (the adversary technique).

A large task enters in the system.
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The online one machine case

Theorem

1 | ri , pi , online | max Si can not be approximated within 1+∆
2 .

Proof. (the adversary technique).

If the large task is scheduled later, a small task is sent accordingly.
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The online one machine case

Theorem

1 | ri , pi , online | max Si can not be approximated within 1+∆
2 .

Proof. (the adversary technique).

It suffers a large delay (and an unbounded stretch).
The optimal stretch is always less than 2 and the schedule stretch is
always 1 + ∆.
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The online m machines case

Theorem

Pm | ri , pi , online | max Si can not be approximated within
1+ ∆

m+1

2 .

Proof.

∆
m+1
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First-Come First-Serve on one machine

Theorem ([LSV08])

FCFS is a ∆-approximation algorithm for 1|ri , pi , online|max Si .

Proof.

Optimal

FCFS

rl Ci

j

i

i

If optimal has a better stretch for a task (red) then one of the task
scheduled between rl and Ci (the blue tasks) will complete after Ci

(green).

S∗j =
C∗j −rj

pj
≥ Ci−ri

pj
= Ci−ri

pi

pi
pj

= Si
pi
pj

Si
S∗j
≤ pj

pi
≤ ∆Erik Saule
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First-Come First-Serve on m machines

Theorem

FCFS is a ∆ + (1− 1
m )(∆ + 1)-approximation algorithm for

Pm|ri , pi , online|maxSi .

Proof.
∆

(1− 1
m

)(1− 1
m

)∆
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Dual-approximation Algorithm for Stretch using EDF

DASEDF (S)

It targets a maximum stretch S .

Task i must complete before the deadline Di = ri + piS .

Solves the deadline problem.

Earliest Deadline First (EDF)

Considers the tasks in order of non-decreasing deadline.

Schedules the tasks as soon as possible.

If a task starts after its deadline, declares the schedule infeasible.

DASEDF

Find the smallest maximum stretch S∗ such that the deadline
problem is feasible using a binary search.

Use that schedule until an other tasks is released.
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Dual-approximation Algorithm for Stretch using EDF

Lemma

If a schedule that completes each task i before Di exists, then EDF creates
a schedule where each task i completes before Di + (1− 1

m )pi .

Theorem

DASEDF(S) returns a solution with maximum stretch less than S + 1− 1
m

or ensures that no schedule with maximum stretch of S exists.

Theorem

When DASEDF is invoked, let S∗ be the optimal stretch for the tasks in
queue. DASEDF returns a solution of stretch S < S∗ + 1.

Observation

DASEDF is not an online approximation algorithm. Its performance ratio
is at least ∆.
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Summing up

Positive Results

FCFS is a ∆-approximation algorithm on 1 machine [LSV08].

FCFS is a (2∆ + 1)-approximation algorithm on m machines.

DASEDF is a ”local” 1-additive-approximation on m machines.

Negative results

No approximation better than 1+∆
2 on 1 machine.

No approximation better than
1+ ∆

m+1

2 on m machines.

How to beat ∆ ?
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Resource Augmentation : Faster machines

Theorem

1 | ri , pi , online | max Si can not be approximated within 1+∆
2ρ using a ρ

faster machine.
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Resource Augmentation : More machines

Theorem

1 | ri , pi , online | max Si can not be approximated within
ρ√∆
ρ+2 using ρ

machines.

Proof.

Send successively tasks of size ∆, ρ
√

∆
ρ−1

, . . . , ρ
√

∆, 1

The Split algorithm

The algorithm schedules the tasks of size between ρ
√

∆
j

and ρ
√

∆
j+1

on
the jth copy of the system. The local schedule is done by a classical max
stretch algorithm called ALGO.

Theorem

If ALGO is an f (∆)-approximation on m machines, Split is a
f ( ρ
√

∆)-approximation algorithm using ρm machines.
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Reservation Scheme

In the real life, we don’t have ρ times more machines.

Real Split(X , T )

splits the cluster in two parts :

the main part of m − X machines.
the auxilary part of X machines.

when a task is released, the scheduling algorithm is run on the main
part with the new task.

if the maximum stretch of the main part is more than T

the scheduling algorithm is run on the auxilary part with the new task.
the task is allocated to the part that gives the best overall maximum
stretch.
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Setting

Instance

300 machines; 20000 tasks

processing time : uniformly distributed in [1 : ∆]

release time : exponential inter arrival time of parameter λ

Parameters

∆ between 5 and 100

λ to have a load between 220 and 310. (load : average number of
task in the system)

(20 runs per parameter set)

Reservation scheme

X : between 1 and 30 machines in the auxilary part

T : stretch threshold between 1.2 and 3 for DASEDF and from 1.2 to
10 for FCFS
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Result - overview
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Result - in function of ∆
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Results - in function of the load (∆ = 100)
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Conclusion

Positive results

FCFS is a 2∆ + 1-approximation on m machines.

DASEDF is a ”local” 1-additive-approximation on m machines.

DASEDF beats FCFS in simulations.

Split is a ρ-augmented. f ( ρ
√

∆)-approximation algorithm.

Machine availability is the key

Approximation lower bounds drops from 1+∆
2 to

1+ ∆
m+1

2 when the
number of machine increases.

Machine resource augmentation leads to
ρ√∆
ρ+2 approximation lower

bound which is better than having faster machine which leads to 1+∆
2ρ .

The reservation scheme helps in simulation.
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What to do next ?

Improvement

The performance ratio of FCFS on m machines is probably loose.

Performance ratio of DASEDF ?

Closing the gap between and
1+ ∆

m+1

2 (LB) and 2∆ + 1 (FCFS). Using
a staircase construction to maximize availability perhaps ?

Select the right parameters for the reservation scheme.

On other models

Rigid tasks.

Moldable tasks (“scheduling in Knoxville” 2009 and JSSPP 2010).

Average stretch.
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Thank you

More information

contact : esaule@bmi.osu.edu
visit: http://bmi.osu.edu/hpc/

Research at HPC lab is funded by
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