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Contributions of this Research

a mathematical model for quantifying 

the stochastic robustness of resource allocations 

in a dynamic environment

 the design of a novel resource allocation 

technique based on this model of robustness
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Problem Statement

modeled after real-world satellite imagery processing system

 receive user requests for image processing

utilize cluster of M heterogeneous machines 

to process a dynamically arriving workload

 resource manager assigns requests to heterogeneous machines

requests are queued for processing
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Heterogeneous Parallel Computing System

 interconnected set of different types of 
machines with varied computational capabilities

workload of applications with different 
computational requirements

each application may perform differently
on each machine

furthermore: machine A can be better than 
machine B for application 1 but not for application 2

 resource allocation: 
assign requests to machines 
to optimize some performance measure

NP-complete (cannot find optimal in reasonable time)

use heuristics to find near optimal allocation



Dynamic System Model

each dynamically arriving user request has three elements

which existing utility application to be executed

archived data to be processed by that application

a deadline for completing that particular request

 agreement between service provider and customer

if miss deadline, complete on a “best effort” basis

simplifying assumption that data needed for request is 

staged to machine while request in queue
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Characteristics of Applications

applications limited to a large set of 

frequently run algorithms

no inter-application communication

application execution times may vary substantially

execution time dependent on data size and content,

and machine assigned to application

modeled as “random variables”

probability mass functions (PMFs) are provided for the 

execution time of each application on each machine

PMFs based on experiments and/or historical data

probability of all possible execution times

for that application on that machine

assume accurate PMFs exist
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Performance Metric

goal: complete all requests by their individual deadlines

performance metric: 

percent of requests that meet their individual deadlines

dynamic immediate mode mappings considered

request mapped as soon as it arrives

 requests cannot be re-assigned

queued request executed even though it cannot be completed 

by its individual deadline - “best effort” basis 
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 complex computing and communication systems 

often operate in an unpredictable environment 

satellite imagery processing system is just one example

 term “robustness” usually used without explicit definition

The Three Robustness Questions

1. what behavior of the system makes it robust?

 ex. completing all requests by their individual deadlines

2. what uncertainty is the system robust against?

 ex. application execution times may vary substantially

3. quantitatively, exactly how robust is the system? 

 probability of completing all requests 

by their individual deadlines
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Probability of Completing All Requests by Deadlines

a new request arrives at time-step t(k) 

and needs to be assigned to a machine

 rij – i th request assigned to machine j at time-step t(k)

p(rij) – probability of completing rij by its deadline

nj – number of requests assigned to machine j at time-step t(k)

p(r1j , r2j , ··· , rnj j ) – joint probability of completing 

all requests assigned to machine j by their individual deadlines
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Calculating Joint Probabilities ― p(r1j , r2j )

1. find p(r1j): prob. r1j meets deadline

a) drop pulses < t(k) (current 
time) and renormalize

b) sum pulses < deadline D1j

2. find p(r1j, r2j) = p(r1j) ∙ p(r2j | r1j) 

a) find PMF for r1j meeting D1j

 drop pulses >  deadline D1j

 renormalize

b) convolve with execution 
time PMF for r2j

c) p(r2j | r1j) = 

[sum pulses < deadline D2j]
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Dynamic Stochastic Robustness Metric

 find probability to complete all requests p(r1j, r2j, ···, rnj j)

p(r1j, r2j )  = p(r1j) ∙ p(r2j | r1j)

p(r1j, r2j, r3j) = p(r1j, r2j ) ∙ p(r3j | r1j, r2j )

=

p(r1j, r2j, ···, rnj j )  = p(r1j, r2j, ···, rnj
−1 j ) ∙ p(rnj j | r1j, r2j, ···, rnj

−1 j )

ρ(k) – stochastic robustness metric at time-step t(k)
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Wall Clock Time Needed to Calculate ρ(k)

most time-consuming calculation is the convolution of the 

application execution time PMFs

 timed several completion time calculations on 

Graphics Processing Units (GPUs)

convolution using discrete fast Fourier transforms

 CUFFT package from NVIDIA

average execution time for ρ(k) was 0.0029 seconds

 using data from our experiment

 significant reduction from general purpose CPUs 

 convolutions in real time are feasible
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Heuristics

 recall

performance metric: 

percent of requests that meet their individual deadlines

immediate mode heuristic

 request assigned immediately upon its arrival

we propose a new technique based on 

maximizing stochastic robustness

 compare with four well known resource allocation techniques

 simulation study of a heterogeneous parallel computing system
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MaxRobust

attempts to greedily maximize robustness of each request

procedure:

1) for incoming request i

for each machine j

 calculate ρ(k) if request i was

added to machine j queue

2) assign request to machine that maximizes ρ(k)

break ties using the KPB heuristic
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Minimum Expected Completion Time (MECT)

based on Minimum Completion Time (MCT) heuristic

attempts to minimize the expected completion time

because immediate mode, also implicitly 

attempts to maximize chance of making deadline

procedure:

1) for incoming request i

for each machine j

 calculate expected (mean) completion time if request 

i was added to machine j queue

(use expected execution times for all requests)

2) assign request to machine that minimizes 

expected completion time
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Minimum Expected Execution Time (MEET)

based on Minimum Execution Time (MET) heuristic

attempts to minimize the expected execution time 

of each request

procedure:

1) for incoming request i

for each machine j

 calculate expected (mean) execution time 

for request i on machine j

(independent of requests already assigned to machines)

2) assign request to machine that minimizes 

expected execution time
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K-Percent Best (KPB)

attempts to minimize expected completion time of each request

uses only K% of fastest machines for a given request

 best K% was 37.5% - 3 out of 8 machines 

(determined empirically)

because immediate mode, also implicitly 

attempts to maximize chance of making deadline

procedure:

1) for incoming request i

identify the K best set of machines (Bestk)

for each machine j

 calculate expected completion time

if request i was added to machine j queue

(use expected execution times for all requests)

2) assign request to machine that minimizes 

expected completion time
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Shortest Queue (SQ)

assigns requests to machines with the smallest number

of requests in the queue

procedure:

1) assign i to the machine with the smallest number of pending 

requests in its input queue

 ties are broken arbitrarily
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Simulation Setup ― Machine Description

 system of eight heterogeneous machines

assumed 12 different application types

SPECInt benchmark application results used to 

simulate execution time PMFs

each simulation trial

2,000 dynamically arriving requests

requests arrived over period of 20,000 time-steps

modeled arrivals as a Poisson process

deadline for each request = arrival time + average over all 

machines of expected execution time (tight)
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Simulation Setup ― Simulation Trials

 reported results for 100 different simulation trials

each request randomly assigned 

application type (1 through 12)

simulated execution times sampled from application 

execution time PMF

 actual execution times in the simulation

 used to determine if application met deadline
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Comparison of Heuristic Results

MECT – Minimum Expected Completion Time

MEET – Minimum Expected Execution Time

KPB – K-Percent Best

SQ – Shortest Queue
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Discussion of Results ― Arrival of First Requests

 for all heuristics, requests were likely to meet their deadline 

at the beginning of the simulation

arrival of first 50 requests

initially machines are more likely to complete 

requests assigned to them

 machines start in idle state

 during start-up machines are undersubscribed
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Discussion of Results ― MaxRobust

MaxRobust performed significantly better than other heuristics

only heuristic to use stochastic information 

only heuristic to use explicitly information about deadlines
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Discussion of Results ― MEET

Minimum Expected Execution Time (MEET)

MEET performed poorly

ignored stochastic information

MEET underutilized poor performing machines
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Discussion of Results ― MECT and KPB

Minimum Expected Completion Time (MECT)

MECT performed poorly

ignored stochastic information

if request takes longer than expected, 

then other requests in the queue may miss their deadline

even if they do not take longer than expected times

K-Percent Best (KPB)

KPB better than MECT because used subset of MET machines

but still had MECT problems
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Discussion of Results ― SQ

Shortest Queue (SQ)

SQ performed significantly better than KPB, MECT, and MEET

not as good as MaxRobust

selecting machine with shortest queue 

reduces impact of some requests having a 

longer than expected execution time

 minimizes number of preceding requests 

in queue on average
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Summary

designed a mathematical model for quantifying the stochastic 

robustness of resource allocations in a dynamic environment

designed and evaluated MaxRobust heuristic

based on stochastic robustness 

MaxRobust performs significantly better than 

SQ, MECT, MEET, and KPB

MECT and KPB are adapted from heuristics that have been 

shown to perform well in other problems

MaxRobust heuristic has shown promise in our experiments 

results shows importance of stochastic robustness 

in dynamic environments
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Next Steps

methods to collect data to build the initial PMFs

methods to update PMFs using experiential data

 fast and effective techniques for convolving PMFs 

 consider batch-mode heuristics in this environment

 consider how to manage situations when joint probability is 0

evaluate importance of accurate PMFs
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