On Cluster Resource Allocation for Multiple Parallel Task Graphs

Henri Casanova Frédéric Desprez Frédéric Suter

University of Hawai'i at Manoa

INRIA - LIP - ENS Lyon

IN2P3 Computing Center, CNRS / IN2P3

3rd Scheduling workshop Aussois, France June 2, 2010

Context

Scientific Workflow

- Application represented by a Directed Acyclic Graph (DAG)
 - ► Nodes ⇒ Computations (usually sequential)
 - Edges \Rightarrow Precedence constraints and communications

Evolution of Processor Architectures

- Performance no longer coming from clock rate increase
 - Heat dissipation issues, high power consumption
- Multi- and Many-cores arising to keep pace with Moore's Law
- Memory becomes the new bottleneck
 - Risks of using 1 core per chip only for some applications

Question

► How to make workflows benefit from new processor architectures?

Next Generation Workflows?

From sequential ...

Next Generation Workflows?

- Advantages
 - Keep the task-parallelism of the workflow structure
 - Add data-parallelism in task execution
- Challenge
 - Good scheduling algorithms

How to schedule such Parallel Task Graphs?

Two steps

- 1. Determine the right number of processing units per node \Rightarrow Allocation
- 2. Find the "right" set of resources to execute each node \Rightarrow Mapping

Seminal algorithms

- CPA: Critical Path and Area-based scheduling
 - Radulescu and Van Gemund [ICPP 2001]
- Some variants: MCPA (Modified CPA), HCPA (Heterogeneous CPA), biCPA (bi-criteria CPA)

Objective functions

- Minimizing the completion time or the work needed
- Bi-criteria optimization

How to schedule such Parallel Task Graphs?

Two steps

- 1. Determine the right number of processing units per node \Rightarrow Allocation
- 2. Find the "right" set of resources to execute each node \Rightarrow Mapping

Seminal algorithms

- CPA: Critical Path and Area-based scheduling
 - Radulescu and Van Gemund [ICPP 2001]
- Some variants: MCPA (Modified CPA), HCPA (Heterogeneous CPA), biCPA (bi-criteria CPA)

Objective functions

- Minimizing the completion time or the work needed
- Bi-criteria optimization

Question

How to schedule a batch of such PTGs?

Frédéric Suter - CC-IN2P3

Outline

- Introduction
- Notations and Performance Metrics
- The Naïve Solution: Be Selfish
- Some Alternatives
- Evaluation

Some Notations to Begin

- Simultaneous execution of N PTGs on a cluster of P processors
- Each PTG is a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - ▶ $\mathcal{V} = \{v_i \, | \, i = 1, \dots, V\} \rightarrow \mathsf{data-parallel tasks}$
 - ▶ $\mathcal{E} = \{e_{i,j} | (i,j) \in \{1, ..., V\} \times \{1, ..., V\}\} \rightarrow \text{precedence constraints}$
- No communication costs
- $T(v, p) \rightarrow$ execution time of task v on p processors
- $\omega(v) = T(v, p) \times p \rightarrow \text{work relative to the execution of task } v \text{ on } p \text{ procs}$
- ▶ $bl(v) \rightarrow bottom \ level \ of \ task \ v$
- $C^*_{maxi} \rightarrow$ makespan of the i^{th} PTG on the dedicated cluster
- $C_{max_i} \rightarrow$ makespan of the *i*th PTG in the presence of competition

Performance Metrics

Average Stretch

- Average performance as perceived by the PTGs
- $\sum_{i=1}^{N} C_{max_i} / \sum_{i=1}^{N} C_{max_i}^*$.

Overall Makespan

- > Standard metric for the performance of the whole batch
- $\blacktriangleright \max_{i=1,\ldots,N} C_{max_i}.$

Maximum Stretch

- A measure of fairness
 - If optimally minimized \Rightarrow PTGs have the same stretch \Rightarrow fairness is optimal.

 $\blacktriangleright \max_{i=1,...,N} C^*_{max_i} / C_{max_i}$

Principle of CPA

Concept

Find an allocation that is a good tradeoff between

- Makespan: T_{CP} , the critical path length
- Work: $T_A = \frac{1}{P} \sum_i W(v_i)$, the average area
- While $(T_{CP} > T_A)$
 - One extra processor to the most critical task
- Mapping with a classical list scheduling heuristic

CPA's Allocation Procedure

1: for all $v \in \mathcal{V}$ do 2: $p(v) \leftarrow 1$ 3: end for 4: while $T_{CP} > T_A$ do 5: $v \leftarrow task \in CP \mid \left(\frac{T(v,p(v))}{p(v)} - \frac{T(v,p(v)+1)}{p(v)+1}\right)$ is maximum 6: $p(v) \leftarrow p(v) + 1$ 7: Update T_A and T_{CP} 8: end while

The Naïve Solution: Be Selfish

SELFISH

- 1. Compute an allocation for each PTG with CPA
 - Considering that the cluster is dedicated
- 2. Create a single scheduling list with all the tasks
- 3. Sort it by decreasing values of bl(v)
- 4. Map tasks to processors in order
- 5. Apply a conservative backfilling step

Potential Drawbacks

- ► Each PTG ignores the others → Concurrency
- No distinction between "short" and "long"
 - \blacktriangleright Tasks of short PTGs have small bottom level \rightarrow Scheduled at last
 - Bad impact on fairness

Illustration

Makespan = 181.5 sec.

$$\mathsf{Fairness} = 1.82$$

Frédéric Suter - CC-IN2P3

Outline

Introduction

- Notations and Performance Metrics
- The Naïve Solution: Be Selfish

Some Alternatives

Improving the Mapping Step Combining the Graphs Distributing the Resources Consider PTGs as Independent Moldable Jobs

• Evaluation

Improving the Mapping Step

Objective

- Give more importance to short PTG
 - Greatest impact on fairness

SELFISH_WEIGHT

• Sort tasks by decreasing $bI_{i,j}/\left(C_{max_i}^*\right)^2$

SELFISH_ORDER

- ► Sort PTG by increasing C^{*}_{maxi}
- Then sort tasks by decreasing bl_{i,j}

Potential Drawbacks

© May increase the overall makespan

Illustration

SELFISH_WEIGHT

SELFISH_ORDER

Makespan = 200.3 sec. Fairness = 1.21

Makespan = 198.5 sec. Fairness = 1.20

Fine [s]

Combining the Graphs

- Proposed by Zhao and Sakellariou
 - For regular DAGS
- Merge all PTGs into one
- ► Then apply an algorithm for single PTG (i.e., CPA)

Potential Drawbacks

- $\ensuremath{\textcircled{\sc 0}}$ C1 postpones the small PTGs \rightarrow bad impact on fairness
- ③ High level of concurrency badly handled by CPA

Frédéric Suter - CC-IN2P3

Basic idea

- Constrain each PTG in the allocation phase
 - Apply CPA as if the cluster has less processors, i.e., $P_i < P \mid \sum_{i=1}^{N} P_i = P$
- Different static constraints proportional to
 - The number of PTGs: $P_i = 1/N \rightarrow CRA_NDAGS$
 - ► The work of each PTG: $P_i = \frac{1}{2N} + \frac{\omega_i}{2\sum_{i=1}^N \omega_i} \rightarrow CRA_WORK$
 - ► The width of each PTG: $P_i = \frac{1}{2N} + \frac{width(i)}{2\sum_{i=1}^{N} width(j)} \rightarrow CRA_WIDTH$
- ► Can be combined to _WEIGHT and _ORDER optimized mappings

Potential Drawbacks

- © Static constraints cannot account for
 - A PTG completion
 - Changes in shape

Illustration

CRA_NDAGS

Constraints

- ▶ PTG₀ = 7
- ▶ PTG₁ = 6
- ▶ PTG₂ = 7

Constraints

- ▶ PTG₀ = 6
- ▶ PTG₁ = 5
- ▶ PTG₂ = 9

CRA_WORK

The MAGS Algorithm

- Consider PTGs as malleable jobs
- Sketch of the algorithm
 - 1. Determine scheduling periods
 - 2. Find an allocation for each PTG in each period
 - 2.1 It defines a malleable allocation
 - 3. Schedule the malleable allocations
- Malleable Allocations with Guaranteed Stretch
 - This algorithm even comes with a guarantee!

Determining the Scheduling Periods

- Start with a perfectly fair schedule
 - In which all PTGs experience the same stretch S
- Compute a lower bound of S called S*
 - Assume that PTGs are ideally malleable jobs
 - The ith job should finish exactly at time $S \times C^*_{max_i}$
 - And all job j for $1 \le j \le i$ should finish before $S \times C^*_{max_i}$
 - Otherwise the ith job has a stretch greater than S
 - The sum of the works is lower than $P \times S \times C^*_{max_i}$

$$\forall i = 1, \dots, n$$
 $\sum_{j=1}^{i} P \times C^*_{max_j} \leq P \times S \times C^*_{max_j}$

The lower bound S* on the stretch is then

$$S^* = \max_{i=1,...,n} rac{1}{C^*_{\max_i}} \sum_{j=1}^i C^*_{\max_j}$$

- This leads to N periods finishing at $S^* \times C^*_{max_i}$
 - S Many periods
 - © Some may be very small (too small to execute a single task)

Relaxing the Perfectly Fair Schedule

- Structure the schedule in M periods
 - Period *i* lasts from t_{i-1} to t_i
 - $t_0 = 0$, the rest has to be be determined
- **>** Job *j* finishes in period i_j in the perfectly fair schedule

 $t_{i_j-1} \leq S^* imes C^*_{max_i} < t_{i_j}$

- Set $t_1 = S^* \times C_{max_1}$
 - Only job 1 may complete during the first period
- Use geometrically increasing periods
 - Define $t_{i+1} = t_i \times (1 + \lambda)$ for i = 2, ..., M and some $\lambda > 0$
 - Then $t_i = S^* \times C_{\max_1} \times (1 + \lambda)^{i-1}$ for $i = 1, \dots, N$
- The stretch of each job is smaller than $(1 + \lambda)S^*$
- $\flat \ \lambda = \max(1, \pi/(S^*C^*_{max_1}))$
 - With π the smallest allowed period
- $\hfill {\ensuremath{\mathbb S}}$ Guarantee that no job is more than a factor 2 away from S^*

Illustration

- Objective: finish no later than $S^* \times C^*_{max_i}$
- Consider the periods in reverse order
- Schedule the tasks in a bottom-up fashion
 - From the exit tasks towards the entry task
- Why?
 - The exit task of each PTG finishes exactly at the end of its last period
- Use CPA to determine the allocation of each task
 - As if the cluster comprised the alloted number of processors in the current period

Relaxing the Stretch Guarantee

- Jobs aren't perfectly malleable
 - Some tasks may not complete before the end of a period
 - Postponing would be bad!
- Solution: introduce some slack
- The guarantee is now *slack* $\times 2 \times S^*$
 - Where $slack \ge 1$
- How to find the smallest slack leading to a feasible schedule?
 - 1. Start with slack = 1
 - 2. Double the value of the slack until a schedule is found
 - 3. Apply a binary search

Consider PTGs as Independent Moldable Jobs

$3/2 + \epsilon$ approximation algorithm

- ▶ Proposed by Dutot et al. In the Handbook of Scheduling, Chapter 26
 - Computes an approximation of the optimal makespan C^{*}_{max}
 - Computes an allocation for each job
 - Schedules in two shelves
 - Larger jobs in the first shelf, Smaller jobs in the second one

Extension at SPAA'04

- Two different list scheduling strategies: LPTF and SAF
- A K-shelves approach
 - Partition the time in K phases, or "shelves"
 - Depends on C^*_{max} and the smallest execution time
 - For each shelf
 - Solve a knapsack problem to maximize the work executed in the current shelf

Adapting to our Context

- PTGs are a special kind of moldable jobs
 - Have to consider their fine grain structure too
- \blacktriangleright Our proposition \rightarrow Coarse-grain Allocation and Fine-grain Mapping

The CAFM Approach

Global Sketch

- 1. Get a moldable profile for each job
 - > Determine the makespan for each job for each number of processors
- 2. Determine a coarse-grain allocation for each moldable job
- 3. Schedule the "boxes" representing each selected job
- 4. Schedule each task graph within its box (fine-grain mapping)
- 5. Open the boxes
- 6. Do some backfilling

The variants

- CAFM_LPTF
- CAFM_SPTF
- CAFM_SAF

- ► CAFM_K_SHELVES
- ► CAFM_CRA [_WEIGHT | _ORDER]
 - skip step 3 and swap steps 4 and 5

Potential Drawbacks

- © Step 1 is really time-consuming
- $\$ LPTF favors long PTGs \rightarrow bad for fairness

Illustration

CAFM_LPTF

CAFM_SPTF

Moldable Allocations

- ▶ PTG₀ = 4
- ▶ PTG₁ = 6
- ▶ PTG₂ = 14
- Before backfilling step

Outline

- Introduction
- Notations and Performance Metrics
- The Naïve Solution: Be Selfish
- Some Alternatives
- Evaluation

Experimental Settings

- Evaluation through simulation
 - SimGrid Toolkit v3.3
- Platforms
 - Three clusters of the Grid'5000 platform

Cluster	chti	grillon	grelon	gdx
#proc.	20	47	120	216
Gflop/sec.	4.311	3.379	3.185	3.388

- Gigabit switched interconnect
 - ▶ 100µsec latency and 1Gb/sec bandwidth)
- Applications
 - Random PTGs (10, 20 or 30 tasks)
 - ▶ FFT-shaped PTGS (5, 15, or 39 tasks)
 - Strassen matrix multiplication (25 tasks)
 - No inter-task communication costs
 - ▶ Batches of 2, 4, 6, 8, and 10 PTGs
- Contenders
 - SELFISH_*, CRA_*, CAFM_* and MAGS

And the Winner is

And the Winner is

MAGS!!

Frédéric Suter - CC-IN2P3

On Cluster Resource Allocation for Multiple PTGs

If You Want More Details

Papers

Henri Casanova, Frédéric Desprez and Frédéric Suter. On Cluster Resource Allocation for Multiple Parallel Task Graphs. Submitted to *Journal of Parallel and Distributed Computing*. Also available as INRIA Research Report RR-7224.

Henri Casanova, Frédéric Desprez and Frédéric Suter. Minimizing Stretch and Makespan of Multiple Parallel Task Graphs via Malleable Allocations. In *39th International Conference on Parallel Processing (ICPP 2010)*, San Diego, California, Sep 2010.

Tools

- DAGs generated with daggen
 - http://www.loria.fr/~suter/dags.html
- Output visualization with Jedule
 - http://www.icsi.berkeley.edu/~sascha/jedule/index.html

Makespan vs. Average Stretch

Makespan vs. Maximum Stretch

Makespan distribution

Maximum Stretch Distribution

Contenders performance wrt MAGS

	Makespan	Average Stretch	Maximum Stretch
SELFISH	7%	75.97%	1909.54%
SELFISH_ORDER	21.27%	-3.42%	-13.68%
CRA_WORK_WEIGHT	-1.99%	1.77%	49.79%
CAFM_K_SHELVES	1.14%	-0.44%	38.54%

Task	Execution Time				
T ₁	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 19$$

•
$$T_A = 6.75$$

Task	Execution Time				
T 1	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 17$$

$$\blacktriangleright T_A = 7$$

Task	Execution Time				
T ₁	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 15$$

•
$$T_A = 7.75$$

Task	Execution Time				
T ₁	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 13$$

Task	Execution Time				
T 1	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 11$$

•
$$T_A = 8$$

Task	Execution Time				
T 1	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 10$$

•
$$T_A = 8$$

Task	Execution Time				
T ₁	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

•
$$T_{CP} = 9$$

•
$$T_A = 8.125$$

Task	Execution Time				
T ₁	4 2 1.5 1.5				
<i>T</i> ₂	10	6	4	3	
<i>T</i> ₃	8	5	3.5	3	
<i>T</i> ₄	5	3	2	1.5	

$$T_{CP} = 8$$

•
$$T_A = 8.125$$

Frédéric Suter - CC-IN2P3

On Cluster Resource Allocation for Multiple PTGs