On Cluster Resource Allocation for Multiple Parallel Task Graphs

Henri Casanova Frédéric Desprez Frédéric Suter

University of Hawai'i at Manoa

INRIA - LIP - ENS Lyon

IN2P3 Computing Center, CNRS / IN2P3

3rd Scheduling workshop Aussois, France June 2, 2010

Context

Scientific Workflow

- ▶ Application represented by a Directed Acyclic Graph (DAG)
	- \triangleright Nodes \Rightarrow Computations (usually sequential)
	- \triangleright Edges \Rightarrow Precedence constraints and communications

Evolution of Processor Architectures

- \blacktriangleright Performance no longer coming from clock rate increase
	- \blacktriangleright Heat dissipation issues, high power consumption
- \triangleright Multi- and Many-cores arising to keep pace with Moore's Law
- \blacktriangleright Memory becomes the new bottleneck
	- \triangleright Risks of using 1 core per chip only for some applications

Question

 \blacktriangleright How to make workflows benefit from new processor architectures?

Next Generation Workflows?

From sequential ...

Next Generation Workflows?

- \blacktriangleright Advantages
	- \triangleright Keep the task-parallelism of the workflow structure
	- \blacktriangleright Add data-parallelism in task execution
- \blacktriangleright Challenge
	- \blacktriangleright Good scheduling algorithms

How to schedule such Parallel Task Graphs?

Two steps

- 1. Determine the right number of processing units per node \Rightarrow Allocation
- 2. Find the "right" set of resources to execute each node \Rightarrow Mapping

Seminal algorithms

- \triangleright CPA: Critical Path and Area-based scheduling
	- ▶ Radulescu and Van Gemund [ICPP 2001]
- ▶ Some variants: MCPA (Modified CPA), HCPA (Heterogeneous CPA), biCPA (bi-criteria CPA)

Objective functions

- \triangleright Minimizing the completion time or the work needed
- \blacktriangleright Bi-criteria optimization

How to schedule such Parallel Task Graphs?

Two steps

- 1. Determine the right number of processing units per node \Rightarrow Allocation
- 2. Find the "right" set of resources to execute each node \Rightarrow Mapping

Seminal algorithms

- \triangleright CPA: Critical Path and Area-based scheduling
	- ▶ Radulescu and Van Gemund [ICPP 2001]
- ▶ Some variants: MCPA (Modified CPA), HCPA (Heterogeneous CPA), biCPA (bi-criteria CPA)

Objective functions

- \triangleright Minimizing the completion time or the work needed
- \blacktriangleright Bi-criteria optimization

Question

 \blacktriangleright How to schedule a batch of such PTGs?

Outline

- **•** [Introduction](#page-1-0)
- [Notations and Performance Metrics](#page-7-0)
- **•** The Naïve Solution: Be Selfish
- **•** [Some Alternatives](#page-12-0)
- **e** [Evaluation](#page-27-0)

Some Notations to Begin

- \triangleright Simultaneous execution of N PTGs on a cluster of P processors
- Each PTG is a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
	- $\triangleright \ \mathcal{V} = \{v_i | i = 1, \ldots, V\} \rightarrow \text{data-parallel tasks}$
	- $\triangleright \mathcal{E} = \{e_{i,j} | (i,j) \in \{1,\ldots,V\} \times \{1,\ldots,V\}\}\rightarrow$ precedence constraints
- \triangleright No communication costs
- \triangleright $\tau(v, p) \rightarrow$ execution time of task v on p processors
- $\triangleright \omega(v) = T(v, p) \times p \rightarrow$ work relative to the execution of task v on p procs
- \triangleright bl(v) \rightarrow bottom level of task v
- ► $C_{max_i}^*$ \rightarrow makespan of the i^{th} PTG on the dedicated cluster
- \triangleright C_{max_i} \rightarrow makespan of the *i*th PTG in the presence of competition

Performance Metrics

Average Stretch

- \triangleright Average performance as perceived by the PTGs
- $\blacktriangleright \sum_{i=1}^{N} C_{max_i} / \sum_{i=1}^{N} C_{max_i}^*$.

Overall Makespan

- \triangleright Standard metric for the performance of the whole batch
- \blacktriangleright max_{i=1,...,N} C_{max_i} .

Maximum Stretch

- \blacktriangleright A measure of fairness
	- If optimally minimized \Rightarrow PTGs have the same stretch \Rightarrow fairness is optimal.

 \blacktriangleright max_{i=1,...,N} $C_{max_i}^* / C_{max_i}$

Principle of CPA

Concept

 \triangleright Find an allocation that is a good tradeoff between

- \triangleright Makespan: T_{CP} , the critical path length
- \blacktriangleright Work: $\overline{\mathcal{T}_A} = \frac{1}{P}\sum_i W(v_i)$, the average area
- \blacktriangleright While $(T_{CP} > T_A)$
	- \triangleright One extra processor to the most critical task
- \triangleright Mapping with a classical list scheduling heuristic

CPA's Allocation Procedure

1: for all $v \in V$ do 2: $p(v) \leftarrow 1$ $3[°]$ end for 4: while $T_{CP} > T_A$ do 5: $v \leftarrow \text{task} \in \text{CP} \mid \left(\frac{T(v, p(v))}{p(v)} - \frac{T(v, p(v)+1)}{p(v)+1} \right)$ is maximum 6: $p(v) \leftarrow p(v) + 1$
7: Undate T_A and Update T_A and T_{CP} 8: end while

The Naïve Solution: Be Selfish

SELFISH

- 1. Compute an allocation for each PTG with CPA
	- \triangleright Considering that the cluster is dedicated
- 2. Create a single scheduling list with all the tasks
- 3. Sort it by decreasing values of $b/(v)$
- 4. Map tasks to processors in order
- 5. Apply a conservative backfilling step

Potential Drawbacks

- \triangleright Each PTG ignores the others \rightarrow Concurrency
- \triangleright No distinction between "short" and "long"
	- \triangleright Tasks of short PTGs have small bottom level \rightarrow Scheduled at last
	- ³ Bad impact on fairness

Illustration

Makespan $= 181.5$ sec.

$$
\mathsf{Fairness} = 1.82
$$

Outline

o [Introduction](#page-1-0)

- [Notations and Performance Metrics](#page-7-0)
- **The Naïve Solution: Be Selfish**

• [Some Alternatives](#page-12-0)

[Improving the Mapping Step](#page-13-0) [Combining the Graphs](#page-15-0) [Distributing the Resources](#page-16-0) [Consider PTGs as Independent Moldable Jobs](#page-24-0)

• [Evaluation](#page-27-0)

Improving the Mapping Step

Objective

- \triangleright Give more importance to short PTG
	- \blacktriangleright Greatest impact on fairness

SELFISH WEIGHT

► Sort tasks by decreasing $bl_{i,j}/(C_{max_i}^*)^2$

SELFISH ORDER

- Sort PTG by increasing C_{max}^*
- \blacktriangleright Then sort tasks by decreasing $bl_{i,j}$

Potential Drawbacks

 \odot May increase the overall makespan

Illustration

SELFISH WEIGHT

200.3 28 29 26 27 $\overline{\Xi}$ 24 25 ğ $\overline{22}$ 23 ∞ $\overline{\text{21}}$ **R** λ 18 19 16 17 $\overline{3}$ 15 $\bar{1}1$ 12 $\overline{2}$ **Q** 10 0.0 12 13 14 15 16 17 18 19 হ \overline{A} $\overline{\mathbf{a}}$ $\overline{\mathbf{r}}$ \overline{a} 10^{11} Processors

 M akespan = 200.3 sec. $Fairness = 1.21$

SELFISH ORDER

 M akespan = 198.5 sec. $Fairness = 1.20$

Combining the Graphs

- \blacktriangleright Proposed by Zhao and Sakellariou
	- \blacktriangleright For regular DAGS
- \triangleright Merge all PTGs into one
- \triangleright Then apply an algorithm for single PTG (i.e., CPA)

Potential Drawbacks

- \odot C1 postpones the small PTGs \rightarrow bad impact on fairness
- \odot High level of concurrency badly handled by CPA

Basic idea

- \triangleright Constrain each PTG in the allocation phase
	- Apply CPA as if the cluster has less processors, i.e., $|P_i| < P \sum_{i=1}^{N} P_i = P_i$
- \triangleright Different static constraints proportional to
	- The number of PTGs: $P_i = 1/N \rightarrow \text{CRA}$ NDAGS
	- ► The work of each PTG: $P_i = \frac{1}{2N} + \frac{\omega_i}{2\sum_{j=1}^N \omega_j} \rightarrow \text{CRA_WORK}$
	- **Fig. 1** The width of each PTG: $P_i = \frac{1}{2N} + \frac{\text{width}(i)}{2\sum_{i=1}^{N} \text{width}(i)}$ $\frac{W^{(l)}}{2\sum_{j=1}^N \text{width}(j)} \rightarrow \text{CRA_WIDTH}$
- \triangleright Can be combined to _WEIGHT and _ORDER optimized mappings

Potential Drawbacks

- / Static constraints cannot account for
	- \triangleright A PTG completion
	- \blacktriangleright Changes in shape

Illustration

CRA NDAGS

 \blacktriangleright Constraints

- \blacktriangleright PTG₀ = 7
- \blacktriangleright PTG₁ = 6
- \blacktriangleright PTG₂ = 7

CRA WORK

- \blacktriangleright Constraints
	- \blacktriangleright PTG₀ = 6
	- \blacktriangleright PTG₁ = 5
	- \blacktriangleright PTG₂ = 9

The MAGS Algorithm

- \triangleright Consider PTGs as malleable jobs
- \triangleright Sketch of the algorithm
	- 1. Determine scheduling periods
	- 2. Find an allocation for each PTG in each period
		- 2.1 It defines a malleable allocation
	- 3. Schedule the malleable allocations
- \triangleright Malleable Allocations with Guaranteed Stretch
	- \triangleright This algorithm even comes with a guarantee!

Determining the Scheduling Periods

- \triangleright Start with a perfectly fair schedule
	- In which all PTGs experience the same stretch S
- ► Compute a lower bound of S called S*
	- \triangleright Assume that PTGs are ideally malleable jobs
	- ► The i th job should finish exactly at time $S \times C_{max_i}^*$
		- And all job j for $1 \le j \le i$ should finish before $S \times C^*_{max_i}$
		- \triangleright Otherwise the ith job has a stretch greater than S
	- ► The sum of the works is lower than $P \times S \times C^*_{max}$

$$
\forall i=1,\ldots,n \quad \sum_{j=1}^i P \times C_{\text{max}_j}^* \leq P \times S \times C_{\text{max}_j}^*
$$

The lower bound S^* on the stretch is then

$$
S^* = \max_{i=1,...,n} \frac{1}{C_{\max_i}^*} \sum_{j=1}^i C_{\max_j}^*
$$

- ▶ This leads to N periods finishing at $S^* \times C^*_{max}$
	- **[©]** Many periods
	- / Some may be very small (too small to execute a single task)

Relaxing the Perfectly Fair Schedule

- In Structure the schedule in M periods
	- \triangleright Period *i* lasts from t_{i-1} to t_i
	- \blacktriangleright $t_0 = 0$, the rest has to be be determined
- \blacktriangleright Job *j* finishes in period i_j in the perfectly fair schedule

 $t_{i_j-1} \leq S^* \times C^*_{max_i} < t_{i_j}$

- ► Set $t_1 = S^* \times C_{max_1}$
	- \triangleright Only job 1 may complete during the first period
- \triangleright Use geometrically increasing periods
	- \triangleright Define $t_{i+1} = t_i \times (1 + \lambda)$ for $i = 2, ..., M$ and some $\lambda > 0$
	- ► Then $t_i = S^* \times C_{max_1} \times (1 + \lambda)^{i-1}$ for $i = 1, \ldots, N$
- The stretch of each job is smaller than $(1 + \lambda)S^*$
- $\blacktriangleright \lambda = \max(1, \pi/(S^* C^*_{\text{max}_1}))$
	- \triangleright With π the smallest allowed period
- \odot Guarantee that no job is more than a factor 2 away from S^*

Illustration

- ▶ Objective: finish no later than $S^* \times C^*_{max}$
- \triangleright Consider the periods in reverse order
- \triangleright Schedule the tasks in a bottom-up fashion
	- \blacktriangleright From the exit tasks towards the entry task
- \blacktriangleright Why?
	- \triangleright The exit task of each PTG finishes exactly at the end of its last period
- \triangleright Use CPA to determine the allocation of each task
	- \triangleright As if the cluster comprised the alloted number of processors in the current period

Relaxing the Stretch Guarantee

- \blacktriangleright Jobs aren't perfectly malleable
	- \triangleright Some tasks may not complete before the end of a period
	- \blacktriangleright Postponing would be bad!
- \triangleright Solution: introduce some slack
- The guarantee is now $slack \times 2 \times S^*$
	- \blacktriangleright Where slack >1
- \blacktriangleright How to find the smallest slack leading to a feasible schedule?
	- 1. Start with s lack $= 1$
	- 2. Double the value of the slack until a schedule is found
	- 3. Apply a binary search

Consider PTGs as Independent Moldable Jobs

$3/2 + \epsilon$ approximation algorithm

- **Proposed by Dutot et al. In the Handbook of Scheduling, Chapter 26**
	- ► Computes an approximation of the optimal makespan C_{max}^*
	- \triangleright Computes an allocation for each job
	- \triangleright Schedules in two shelves
		- \blacktriangleright Larger jobs in the first shelf. Smaller jobs in the second one

Extension at SPAA'04

- \triangleright Two different list scheduling strategies: LPTF and SAF
- \triangleright A K-shelves approach
	- Partition the time in K phases, or "shelves"
		- ► Depends on C_{max}^* and the smallest execution time
	- \blacktriangleright For each shelf
		- \triangleright Solve a knapsack problem to maximize the work executed in the current shelf

Adapting to our Context

- \triangleright PTGs are a special kind of moldable jobs
	- \blacktriangleright Have to consider their fine grain structure too
- \triangleright Our proposition \rightarrow Coarse-grain Allocation and Fine-grain Mapping

The CAFM Approach

Global Sketch

- 1. Get a moldable profile for each job
	- \triangleright Determine the makespan for each job for each number of processors
- 2. Determine a coarse-grain allocation for each moldable job
- 3. Schedule the "boxes" representing each selected job
- 4. Schedule each task graph within its box (fine-grain mapping)
- 5. Open the boxes
- 6. Do some backfilling

The variants

- \triangleright CAFM LPTF
- \triangleright CAFM SPTF
- \triangleright CAFM SAF
- \triangleright CAFM K SHELVES
- \triangleright CAFM CRA [WEIGHT | ORDER]
	- \triangleright skip step 3 and swap steps 4 and 5

Potential Drawbacks

- \circledcirc Step 1 is really time-consuming
 \circledcirc LPTF favors long PTGs \rightarrow bad
- LPTF favors long PTGs \rightarrow bad for fairness

Illustration

CAFM LPTF CAFM SPTF

\blacktriangleright Moldable Allocations

- \blacktriangleright PTG₀ = 4
- \blacktriangleright PTG₁ = 6
- \blacktriangleright PTG₂ = 14
- \blacktriangleright Before backfilling step

Outline

- **•** [Introduction](#page-1-0)
- [Notations and Performance Metrics](#page-7-0)
- **•** The Naïve Solution: Be Selfish
- **•** [Some Alternatives](#page-12-0)
- **e** [Evaluation](#page-27-0)

Experimental Settings

- \blacktriangleright Evaluation through simulation
	- \blacktriangleright SimGrid Toolkit v3.3
- \blacktriangleright Platforms
	- \blacktriangleright Three clusters of the Grid'5000 platform

- \blacktriangleright Gigabit switched interconnect
	- ▶ 100 μ sec latency and 1Gb/sec bandwidth)
- \blacktriangleright Applications
	- Random PTGs $(10, 20)$ or 30 tasks)
	- FFT-shaped PTGS $(5, 15, or 39$ tasks)
	- \triangleright Strassen matrix multiplication (25 tasks)
	- \triangleright No inter-task communication costs
	- \triangleright Batches of 2, 4, 6, 8, and 10 PTGs
- \blacktriangleright Contenders
	- \triangleright SELFISH_*, CRA_*, CAFM_* and MAGS

And the Winner is ...

And the Winner is . . .

MAGS!!

Frédéric Suter – CC-IN2P3 **[On Cluster Resource Allocation for Multiple PTGs](#page-0-1)** $\sqrt{28/29}$ $\sqrt{28/29}$ $\sqrt{28/29}$ $\sqrt{28/29}$ $\sqrt{28/29}$

If You Want More Details

Papers

Henri Casanova, Frédéric Desprez and Frédéric Suter. On Cluster Resource Allocation for Multiple Parallel Task Graphs. Submitted to Journal of Parallel and Distributed Computing. Also available as INRIA Research Report RR-7224.

Henri Casanova, Frédéric Desprez and Frédéric Suter. Minimizing Stretch and Makespan of Multiple Parallel Task Graphs via Malleable Allocations. In 39th International Conference on Parallel Processing (ICPP 2010), San Diego, California, Sep 2010.

Tools

- \triangleright DAGs generated with daggen
	- ▶ <http://www.loria.fr/~suter/dags.html>
- \triangleright Output visualization with Jedule
	- ▶ <http://www.icsi.berkeley.edu/~sascha/jedule/index.html>

Makespan vs. Average Stretch

Makespan vs. Maximum Stretch

Makespan distribution

Maximum Stretch Distribution

Contenders performance wrt MAGS

$$
\blacktriangleright T_{\textsf{CP}}=19
$$

$$
\blacktriangleright T_A = 6.75
$$

$$
\blacktriangleright T_{\textsf{CP}}=17
$$

$$
\blacktriangleright T_A = 7
$$

$$
\blacktriangleright T_{\textit{CP}}=15
$$

$$
\blacktriangleright T_A = 7.75
$$

$$
\blacktriangleright T_{\text{CP}}=13
$$

$$
\blacktriangleright T_A = 8
$$

$$
\blacktriangleright T_{\textsf{CP}}=11
$$

$$
\blacktriangleright T_A = 8
$$

$$
\blacktriangleright T_{\text{CP}}=10
$$

$$
\blacktriangleright T_A = 8
$$

$$
\blacktriangleright T_{CP}=9
$$

$$
\blacktriangleright T_A = 8.125
$$

$$
\blacktriangleright T_{\text{CP}} = 8
$$

$$
\blacktriangleright T_A = 8.125
$$

Frédéric Suter – CC-IN2P3 **[On Cluster Resource Allocation for Multiple PTGs](#page-0-1)** \triangleq [35](#page-37-0)[/29](#page-45-0)