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Multi-organization scheduling

Introduction and Motivation

Context: emergence of new HPC platforms

The evolution of high-performance execution platforms leads to
physical or logical distributed entities (organizations) which have
their own local rules. Each organization is composed of multiple
users who compete for the resources, and they aim at optimizing
their own objectives. Such systems are often hierarchical
(many-core).

Proposal:

To create a general framework for studying the resource allocation
problem for most situations corresponding to actual parallel
platforms and to propose efficient solutions for some of these
problems.
Oriented towards theoretical analysis.
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Multi-organization scheduling

Introduction and Motivation

Multi-organization scheduling

The target multi-organization scheduling problem is generic and
corresponds to many possible situations.
Informally, a set of users have some applications to execute on
distributed resources. These resources belong potentially to
multiple organizations that may have their local control and rules.
The objectives of the users are not necessarily the same, but they
are related to a metric on the completion times (i.e. the finishing
times) of the jobs.
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Multi-organization scheduling

Introduction and Motivation

Synthetic view of the problem
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Multi-organization scheduling

Introduction and Motivation

More formally

The problem is to allocate the jobs to the available resources
according of a certain objective. Then, the jobs are scheduled
locally.

Both problems correspond to determine two functions π
(allocation) and σ (schedule).

The set of jobs is available at time 0, the execution is performed
by a series of batches or by successive time frames.
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Multi-organization scheduling

Introduction and Motivation

Notations

m machines

K clusters, i-th cluster owns mi processors. Sometimes, the
clusters correspond to organizations.

n jobs with weights pj for 1 ≤ j ≤ n (and resource
requirements qj in case of parallel jobs)

N users owing each ni jobs

[m] is the set of machines, [n] is the set of jobs
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Multi-organization scheduling

Introduction and Motivation

Classification of problems

Key parameters

Users: single or multiple, uniform or heterogeneous

Type of applications (jobs): sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: related to metrics involving the completion
times, Cmax, ΣCi , stretch
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Multi-organization scheduling

Introduction and Motivation

Methodology

Hypothesis (and examples if needed)

Formal definition of the problem

Complexity analysis (including inapproximability)

Algorithm(s)

Analysis (worst case bounds or in average by the way of
simulations/experiments)

Synthesis (related works, practical issues, remaining open
variants)
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Multi-organization scheduling

Classical Scheduling

Starting smoothly with well-known results

A preliminary basic problem

Users: single or multiple, uniform or heterogeneous

Jobs: sequential, parallel (rigid or malleable), divisible loads

Resources: single, identical , hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Multi-organization scheduling

Classical Scheduling

Classical P-Cmax problem

Informally, this corresponds to the situation of a single
(homogeneous) cluster.
Scheduling n independent jobs on m arbitrary parallel identical
processors aiming at minimizing Cmax.

Complexity:

The problem is weakly NP-hard [Ullman 75].

PTAS for Pm,,Cmax [Tutorial Woeginger] (here, m is fixed).
Dynamic programming scheme leads to a PTAS [Hochbaum and
Shmoys].
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Multi-organization scheduling

Classical Scheduling

List scheduling

Algorithm framework:
List-scheduling [Graham 69] (greedy) whose principle is to build a
list of ready jobs, and to execute any of these jobs as soon there
are available processors. This algorithm has a guarantee in the
worst case.

Remarks:
(asymptotically) optimal algorithm for a large number of jobs. It
works also purely on-line algorithms.
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Multi-organization scheduling

Classical Scheduling

Analysis 1

The idea is based on a geometrical proof on the Gantt chart:

m

≤ pmax

Cmax

m.Cmax = W + Sidle (where W = Σjpj)
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Multi-organization scheduling

Classical Scheduling

Analysis 2

Proposition.

List scheduling is a 2-approximation.

m.Cmax = W + Sidle

Lower bounds:
Cmax∗ ≥ W

m and Cmax∗ ≥ pmax

Sidle ≤ (m − 1).pmax ≤ (m − 1).Cmax∗

Cmax = W
m + Sidle

m ≤ (1 + m−1
m ).Cmax∗
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Multi-organization scheduling

Classical Scheduling

Tightness for general list scheduling

Proposition.

The worst case bound of 2− 1
m for list scheduling is tight.

time time
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Multi-organization scheduling

Classical Scheduling

LPT rule

Based on the tightness of the 2-approximation ratio, we can
improve the bound by considering the specific LPT policy (largest
first):

Approximation bound: 4
3 (for m ≥ 2)
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Multi-organization scheduling

Classical Scheduling

Tightness of LPT

Proposition.

The worst case bound of 4
3 −

1
3m for LPT is tight.

time time

4
3 −

1
3m = 11

9 for m = 3.
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Multi-organization scheduling

Classical Scheduling

Synthesis

List is a very nice framework which realizes a good trade-off
between simplicity and efficiency.
It can be extended to many cases, sometimes it is possible to
analyze theoretically.

other objectives (ΣCi with the ”reverse” SPT policy wich is
optimal for n independent jobs on m machines)

taking into account communication costs

Parallel rigid jobs
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Multi-organization scheduling

Strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Multi-organization scheduling

Strip Packing

Problem statement

Problem: Given n independent rigid tasks and 1 cluster with
m machines, schedule all the jobs minimizing the makespan
Cmax .

Cmax

23 / 68



Multi-organization scheduling

Strip Packing

Continous Vs non-continuous, that is the question

Rigid job scheduling ��
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Rectangle packing =
rigid job continuous
scheduling
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Algorithms for non continuous case generally donot apply to
continuous case but ..

Proofs for continuous case may not apply to non contiguous
case, as the non contiguous optimal could be smaller than the
continous one

However, continuous case is generally harder, and
approximation algorithm/proofs for continous case based on
surfaces arguments apply also to non continuous case
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Multi-organization scheduling

Strip Packing

Continous Vs non-continuous, that is the question
Two important remarks:

Why does classical analysis of List Scheduling fails for
continuous scheduling?

Main argument for LS: J cannot be scheduled at time 1 =⇒
more than m − q processors are busy at time 1

No longer hold for continuous scheduling!

What is the gap between continuous and non continuous
optimal?
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Multi-organization scheduling

Strip Packing

Overview of complexity results for one strip

- both versions (continuous or not) are 3
2 -inapproximable unless

P = NP

+ LS is still a (2− 1
m )-approx.. for non continuous case only!

+ Steinberg/Schiermeyer: fast 2-approx available for both
versions

+ Jansen: very costly (3
2 + ε)-approx available for both versions

+ Kenyon-Remila: AsymptoticFPTAS available for both versions

C∗
max = 2 C∗

max = 3

YES-Instane NO-Instane
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Multi-organization scheduling

Strip Packing

Including extra rules

HF (Higest first) is a natural extension (similar to LPT).

Bad news: no better approximation as for general list (open
question)
Good news: nce dominance rule (there exists a time moment for
which the allocation before this moment is heavy loaded and the
allocation after is weakly loaded).

27 / 68



Multi-organization scheduling

Distributed list Scheduling

Outline

1 Introduction and Motivation

2 Classical Scheduling

3 Strip Packing

4 Distributed list Scheduling

5 Basic multi-organization Scheduling

6 Multiple strip Packing

7 Multiple organizations with parallel jobs

28 / 68



Multi-organization scheduling

Distributed list Scheduling

Distributed control

coming back to sequential jobs

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Multi-organization scheduling

Distributed list Scheduling

Motivations

List scheduling is a nice and helpful technique. However, it is
inefficient in case of fine grain computations for a large number of
processors (because of the centralized nature of the list).
Scheduling a big workload (bag of tasks) or n independent tasks
on m arbitrary parallel identical processors aiming at minimizing
Cmax .

Joint work with Marc Tchiboukdjian (paper available, just ask me)
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Multi-organization scheduling

Distributed list Scheduling

Weakness of a central control

Most existing algorithms are based on the management of a global
list of jobs.
Jobs generated by a running task are inserted into the list. When a
processor is idle, it retrieves a job from the list.

Problem:
The list is accessed concurrently by several processors It should be
protected by a lock (or we use a lock-free list).

There is a big overhead for managing the list.
This technique does not scale well in practice!
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Multi-organization scheduling

Distributed list Scheduling

Description of the execution

Platform with m synchronized identical processors.

Workload composed of n independent jobs with processing
time pj . Each processor i owns a list of jobs, put in the local
queue Qi .

An active processor (non-empty list) executes one unit of
work.

An idle processor (sometimes called thief) randomly chooses
another processor (victim). If the victims list is not empty, the
thief steals ”half” of the tasks and resumes execution at the
next time slot. Otherwise, it tries again at the next time slot.

Contention on lists: if several thieves target the same victim a
random succeed, others fail.
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Multi-organization scheduling

Distributed list Scheduling

Example

t1
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Multi-organization scheduling

Distributed list Scheduling

Example

t2
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Multi-organization scheduling

Distributed list Scheduling

Example

t3
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Multi-organization scheduling

Distributed list Scheduling

Notations

At time t

wi (t) is the amount of work in queue Qi , i.e.
wi (t) =

∑
j∈Qi (t)

pj , and

w(t) =
∑m

i=1 wi (t) is the total work in all the queues. The
initial workload W is equal to w(0) (n or Σpi ).

α(t) is the number of active processors, i.e. the number of
processors with a non-empty queue.
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Multi-organization scheduling

Distributed list Scheduling

Principle of the analysis

Again, the analysis is based on the Gantt chart: the idle surface is
bounded, here there is another factor. Below is a typical execution
of W = 2000 unit independent tasks on m = 25 processors.
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Multi-organization scheduling

Distributed list Scheduling

Potential function

First, we define a potential function Φ(t) that is, to a
multiplicative factor, the variance of the queue sizes.
At time t, the potential function Φ is defined as:

Φ(t) =
m∑

i=1

(
wi (t)− w(t)

m

)2

Moreover, let ∆Φ(t) = Φ(t)− Φ(t + 1).
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Multi-organization scheduling

Distributed list Scheduling

Properties of Φ
Φ(t) is proportional to the variance of the queue sizes.

When Φ(t) = 0, we have ∀i wi (t) = w(t)
m . No more work

requests occurs until the end of the schedule as each
processor has the same amount of work.

The potential function is maximal when all the work is in a
single queue.

Φ(t) ≤
(

1− 1

m

)
· w(t)2 ≤

(
1− 1

m

)
·W 2

The potential function can also be written:

Φ(t) =
m∑

i=1

w2
i (t)− w2(t)

m
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Multi-organization scheduling

Distributed list Scheduling

Main results

First, the expected Cmax applied on a bag of tasks W is
equal to the absolute lower bound W

m plus an additive term in
4e

e−1 log2 W ≤ 6.33 log2 W .
The analysis is tight up to a constant factor. It holds also
when the jobs are not fully divisible which makes the analysis
difficult when the number of jobs per queue is small.

Second, we extend the previous analysis to weighted
independent jobs with unknown processing times.
The additive term becomes O(pmax

pmin
· log W ) where pmin and

pmax are the extremal values of the processing times.
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Multi-organization scheduling

Distributed list Scheduling

Sketch of the proof for a bag of tasks

Decrease of the potential function for an active processor
Let δi (t) be the decrease of the potential function due to job
execution and work requests on processor i at time t.
If processor i does not receive any work request at time t, we have
δi (t) = 2wi (t)− 1.
If processor i receives at least one work request, we have
δi (t) ≥ w2

i (t)/2 + wi (t)− 1.
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Multi-organization scheduling

Distributed list Scheduling

Sketch of the proof for a bag of tasks

Decrease of the potential function in one step
The execution of one slot of the schedule decreases the potential
function by:

∆Φ(t) ≥ 1

2
· pr (α(t)) · Φ(t)

where pr (α) is the probability that a processor receives a work
request if m − α processors are idle:

pr (α) = 1−
(

1− 1

m − 1

)m−α
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Multi-organization scheduling

Distributed list Scheduling

Sketch of the proof for a bag of tasks

Finally, we can bound the expected number of work requests.

Proposition.

The expected makespan for W unit independent jobs scheduled by
Distributed List Scheduling is bounded by

Cmax ≤ W

m
+

2e

e − 1
· log2 W + 1

This is optimal up to a constant factor in log2 W .
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Multi-organization scheduling

Distributed list Scheduling

Extension for weighted jobs

Let us consider now the number of work requests for weighted
independent tasks.
Each job j has a processing time pj which is unknown. Let pmin

and pmax be the minimum and maximum processing times.
During a work request, half of the tasks are transfered from the
active processor to the idle processor.

Proposition.

The expected makespan for weighted independent jobs of total
processing time W scheduled by DLS is bounded by

Cmax ≤ W

m
+ O

(pmax

pmin
· log W + pmax · log m

)
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Multi-organization scheduling

Distributed list Scheduling

Synthesis

As studied in this elementary case, the impact of distribution is
high.
How to extend to hierarchical platforms?
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Multi-organization scheduling

Basic multi-organization Scheduling

Classical optimization point of view

Add local constraints

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi, stretch

Joint work with Johanne Cohen, Daniel Cordeiro and
Frédéric Wagner (paper to appear in Euro-Par 2010)
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Multi-organization scheduling

Basic multi-organization Scheduling

Classical optimization point of view

Motivations

In the concept of grid computing, different organizations share
processors and exchange jobs in order to maximize the profits of
the whole community.
Locally, an organization can act selfishly and refuse to cooperate if
in the final schedule one of its (migrated) jobs could be executed
earlier in one of its own processors.
The focus here is to study the impact on the global performance
(Cmax) of cooperation between selfish organizations. The local
objectives are to minimize Cmax or ΣCi .

Notation:
MOSP(Cmax) or MOSP(ΣCi ).
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Basic multi-organization Scheduling

Classical optimization point of view

MOSP constraints
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Basic multi-organization Scheduling

Classical optimization point of view

MOSP constraints
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Basic multi-organization Scheduling

Classical optimization point of view
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Basic multi-organization Scheduling

Classical optimization point of view

O(1)

O(2)

O(3)

time

J
(1)

Inapproximation.

Ratio between approximation algorithms with and without
selfishness restrictions: ≥ 2− 2
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Multi-organization scheduling
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Basic multi-organization Scheduling

Classical optimization point of view

Complexity 1

MOSP(Cmax) is strongly NP-complete.

Proof. Reduction from 3-Partition.
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Basic multi-organization Scheduling

Classical optimization point of view

Complexity 2

MOSP(ΣCi ) is NP-complete.

Proof. Reduction from Partition.
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Basic multi-organization Scheduling

Classical optimization point of view

Approximation algorithms

The idea is to mix LPT and SPT for solving MOSP with selfish
restrictions.

Phase 1: If solving MOSP(Cmax), each organization applies LPT
locally for its own jobs – or SPT if solving MOSP(ΣCi ).

Phase 2: Global LPT: each time an organization becomes idle, the
longest job that does not have started yet is migrated and
executed by the idle organization.
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Basic multi-organization Scheduling

Classical optimization point of view

Analysis

Proposition:

MOSP is a 2-approximation for both objectives.

Proof.

Phase 2 works as a list scheduling, so Graham’s classical
approximation ratio 2− 1

N holds for all of them.

It is feasible since the migrated jobs are always executed
earlier than the original schedule; this guarantees that the
selfishness restriction is always respected and that both Cmax
and ΣCi of the original organization is not increased;
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Basic multi-organization Scheduling

Game Theory point of view

Motivation for considering a Game

An alternative to classical combinatorial optimization is to study
this problem by a non-cooperative game.
Game theory has some useful tools for considering cooperation and
selfishness (each organization put emphasis on its own local
objective).

The problem here is to minimize the global Cmax of N
organizations composed of one processor.
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Basic multi-organization Scheduling

Game Theory point of view

Game model

Each player k is an organization responsible for an “application”
(a set of n(k) jobs) and wants to minimize its cost(k) (here Cmax
or ΣCi of its jobs);

Each organization applies locally a scheduling algorithm (LPT,
SPT, etc.) with ”my jobs first” policy (MJF);

A strategy S (k) for player k is a vector of n(k) elements such
that S (k)(i) (for 1 ≤ i ≤ n(k)) corresponds to the organization

chosen by player k for job J
(k)
i ;

A configuration (profile) M is the vector (S (1), S (2), . . . ,S (N))
such that S (k) is a strategy of player k .
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Basic multi-organization Scheduling

Game Theory point of view

Game description

..
.

..
.
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Basic multi-organization Scheduling

Game Theory point of view

Nash equilibrium

Definition:
A configuration M = (S (1),S (2), . . . ,S (N)) is a Nash equilibrium if
all the players (organizations indexed by k) satisfy the following
property.

∀s ∈ S(k), cost(k)(M) ≤ cost(k)(s,M−k), where M−k is a vector
(S (1), S (2),S (k−1), S (k+1) . . . ,S (N))

Do there always exist Nash Equilibria for MOSP(Cmax) or
MOSP(ΣCi )?
Preliminary results show that for this game there are instances that
do not have pure Nash Equilibria.
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Basic multi-organization Scheduling

Game Theory point of view

Example of Nash equilibrium for N = 2

time time

There exist several Nash equilibria. The first one does not
correspond to a good (efficient) solution, the second one is optimal.
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Basic multi-organization Scheduling

Game Theory point of view

Price of Anarchy

As seen in the previous example, uncoordinated, selfish behaviour
can lead to sub-optimal global makespan.
We are interested in studying the price of anarchy (ratio between
the social cost of a worst-case Nash equilibrium and the social cost
of an optimal assignment - Cmax).

Definition:
For any instance G of the MOSP game with N machines. Let
Nash(G) denote the set of all strategy profiles that are Nash
equilibria for G, and let opt(G) denote the minimum social cost
over all the assignments. Then:

PoA(N) = maxG maxP∈Nash(G)
cost(P)
opt(G)
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Basic multi-organization Scheduling

Game Theory point of view

Brief synthesis

Game theory with centralized coordination does not help too much
(from the theoretical point of view).
It is hard to guaranty a bound on the convergence towards Nash
equilibria (when they exist).
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Multiple strip Packing
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Multiple strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: related to metrics involving the completion
times, Cmax, ΣCi , stretch

Joint work with Marin Bougeret, Pierre-Francois Dutot, Klaus
Jansen and Christina Otte
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Multiple strip Packing

Scheduling rigid parallel jobs

Informally, this corresponds to the situation of a computational
grid composed of several (homogeneous) clusters.
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Multiple organizations with parallel jobs
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Multiple organizations with parallel jobs

General multi-organization problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel rigid tasks,
divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized with local constraints or distributed

Objectives: Cmax, ΣCi , stretch
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Multiple organizations with parallel jobs

Motivations

Let us consider now a computing platform comosed of several
separate organizations. Parallel applications are submitted locally,
but can be moved to other organizations if it helps to improve the
local schedules.

Scheduling n parallel tasks on k clusters of identical m processors
aiming at minimizing Cmax with distributed control.

Joint work with Pierre-Francois Dutot, Fanny Pascual and
krzysztof Rzadca (preliminary version published in EuroPar 2007,
extended version to appear in IEEE TPDS).
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