
PRODUCT PRECONDITIONING FOR

MARKOV CHAIN PROBLEMS

MICHELE BENZI§∗ AND BORA UÇAR§†

Abstract. We consider preconditioned Krylov subspace methods for computing the stationary
probability distribution vector of irreducible Markov chains. We propose preconditioners constructed
as the product of two fairly simple preconditioners. Theoretical properties of the proposed product
preconditioners are briefly discussed. We use graph partitioning tools to partition the coefficient ma-
trix in order to build the preconditioner matrices, and we investigate the effect of the partitioning on
the proposed preconditioners. Numerical experiments with GMRES on various Markov chain prob-
lems generated with the MARCA software package demonstrate that the proposed preconditioners
are effective in reducing the number of iterations to convergence. Furthermore, the experimental
results show that the number of partitions does not severely affect the number of iterations.

Key words. preconditioning, discrete Markov chains, iterative methods, graph partitioning

AMS subject classifications. 05C50, 60J10, 60J22, 65F10, 65F50, 65F35

1. Introduction. Discrete Markov chains with large state spaces arise in many
applications, including for instance reliability modeling, queuing network analysis,
web-based information retrieval, and computer system performance evaluation [30].
As is well known, the long-run behavior of an ergodic (irreducible) Markov chain is
described by the stationary distribution vector of the corresponding matrix of transi-
tion probabilities. Recall that the stationary probability distribution vector of a finite,
ergodic Markov chain with N ×N transition probability matrix P is the unique 1×N
vector π which satisfies

π = πP, πi > 0 for i = 1, . . .N,

N
∑

i=1

πi = 1 .(1.1)

Here P is nonnegative (pij ≥ 0 for 1 ≤ i, j ≤ N), row-stochastic (
∑N

j=1 pij = 1 for 1 ≤
i ≤ N), and due to the ergodicity assumption it is irreducible.

The matrix A = I − PT , where I is the N × N identity matrix, is called the
generator of the Markov process. The matrix A is a singular, irreducible M -matrix of
rank N − 1. Letting x = πT and hence xT = xT P , the computation of the stationary
vector reduces to finding a nontrivial solution to the homogeneous linear system

Ax = 0 ,(1.2)

where x ∈ R
N , xi > 0 for i = 1, . . . , N , and

∑N
i=1

xi = 1. Perron–Frobenius theory [7]
implies that such a vector exists and is unique. We assume that P is large and sparse;
hence, so is A. We further assume that P and A are partitioned as

P =

[

P11 P12

P21 P22

]

and A =

[

A11 A12

A21 A22

]

=

[

In − PT
11 −PT

21

−PT
12 Im − PT

22

]

.(1.3)

∗The work of this author was supported in part by the National Science Foundation grant DMS-
0511336.

†The work of this author was supported by The Scientific and Technological Research Council of
Turkey (TÜBITAK).

§Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322,
USA (benzi@mathcs.emory.edu, ubora@mathcs.emory.edu).

1

2 M. BENZI AND B. UÇAR

Here In and Im are identity matrices of size n × n and m × m, respectively, where
N = n + m and typically n ≫ m.

Our goal is to develop efficient preconditioners for Krylov subspace methods for
solving the system (1.2). The gist of the proposed preconditioner is to combine the
effects of two simple and inexpensive preconditioners. One of the constituent precon-
ditioners is the well-known block Jacobi preconditioner. The block Jacobi precondi-
tioner is known to deteriorate dramatically with the increasing size of the off-diagonal
blocks. The other preconditioner is proposed here to have a corrective effect on the
block Jacobi preconditioner. We combine the two preconditioners in a multiplica-
tive fashion and obtain product preconditioners. The resulting algorithm can be re-
garded as a two-level method where the block Jacobi preconditioner plays the role of a
smoothing relaxation with the second preconditioner playing the role of a “coarse grid”
correction. Our approach, however, is different from two-level algebraic multigrid or
Schwarz methods known in the literature; see, e.g., [19] and the references therein.
It is also distinct from (and simpler than) the iterative aggregation-disaggregation
(IAD) approach [30].

Due to the very large number N of states typical of many real-world applications,
there has been increasing interest in recent years in developing parallel algorithms for
Markov chain computations; see [3, 4, 8, 15, 18, 21]. Most of the attention so far has
focused on (linear) stationary iterative methods, including block versions of Jacobi
and Gauss–Seidel [8, 18, 21], and on (nonlinear) iterative aggregation/disaggregation
schemes specifically tailored to stochastic matrices [8, 15]. In contrast, little work has
been done with parallel preconditioned Krylov subspace methods. The suitability of
preconditioned Krylov subspace methods for solving Markov models has been demon-
strated, e.g., in [23, 26], although no discussion of parallelization aspects was given
there. Parallel computing aspects can be found in [4], where a symmetrizable sta-
tionary iteration (Cimmino’s method) was accelerated using the Conjugate Gradients
method on a Cray T3D, and in [18], where an out-of-core, parallel implementation of
Conjugate Gradient Squared (with no preconditioning) was used to solve very large
Markov models with up to 50 million states. We further mention [6], where parallel
preconditioners based on sparse approximate pseudoinverses were used to speed-up
the convergence of BiCGStab.

The paper is organized as follows. We briefly review background material on
M -matrices, stationary iterative methods, matrix splittings, and graph partitioning
in Section 2. Then, we discuss two simple preconditioners based on regular splittings
and introduce the product preconditioners in Section 3. Section 4 contains materials
on partitioning the matrices into the 2× 2 block structure (1.3) with an eye to future
parallel implementations of the proposed product preconditioner. In Section 5 we
investigate the effect of the product preconditioner under various partitionings, the
properties of the 2 × 2 block structure imposed by the graph partitioning, and the
performance of the product preconditioner relative to that of some other well-known
preconditioners. We present our conclusions in Section 6.

2. Background. Here we borrow some material from [5, 6, 7, 32] to provide the
reader with a short summary of the concepts and results that are used in building
the proposed preconditioners. We also give a brief description of graph partitioning
by vertex separator, which can be used to obtain the 2 × 2 block structure (1.3).

2.1. Nonnegative matrices and M-matrices. A matrix AN×N is nonnega-
tive if all of its entries are nonnegative, i.e., A ≥ O if aij ≥ 0 for all 1 ≤ i, j ≤ N .

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 3

Any matrix A with nonnegative diagonal entries and nonpositive off-diagonal
entries can be written in the form

A = sI − B, s > 0, B ≥ O .(2.1)

A matrix A of the form (2.1) with s ≥ ρ(B) is called an M -matrix. Here, ρ(B) denotes
the spectral radius of B. If s = ρ(B) then A is singular, otherwise nonsingular. If A
is a nonsingular M -matrix, then A−1 ≥ O.

If A is a singular, irreducible M -matrix, then each k×k principal square submatrix
of A, where 1 ≤ k < N , is a nonsingular M -matrix. If, furthermore, A is the generator
of an ergodic Markov chain, then the Schur complement Sm×m = A22 − A21A

−1
11 A12

of A11 (Eq. (1.3)) is a singular, irreducible M -matrix with rank m − 1 [6, 20].

2.2. Stationary iterations and matrix splittings. Consider the solution of
a linear system of the form Ax = b, where A is an N × N square matrix, possibly
singular, and x, b ∈ R

N . The representation A = B − C is called a splitting if B is
nonsingular. A splitting gives rise to the stationary iterative method

xk+1 = Txk + c, k = 0, 1, . . . ,(2.2)

where T = B−1C is called the iteration matrix, c = B−1b, and x0 ∈ R
N is a given

initial guess. The splitting A = B − C is called regular if B−1 ≥ O and C ≥ O [32],
weak regular if B−1 ≥ O and T ≥ O [7], and an M -splitting if B is an M -matrix and
C ≥ O [28].

It is well known that the convergence of the stationary iteration (2.2) depends on
the convergence of the sequence T k as k → ∞; see, e.g., [32]. The matrix T is said to
be convergent [22] if the powers T k converge to a limiting matrix as k → ∞. If the
limit is the zero matrix, then T is called zero-convergent. For a nonsingular matrix A,
a necessary and sufficient condition for the convergence of (2.2) for any x0 is that T
be zero-convergent, or equivalently, that ρ(T) < 1. In the singular case the situation
is more involved [7, 31]. In this case, 1 is in the spectrum of T , i.e., 1 ∈ σ(T), and
a necessary condition for convergence is that ρ(T) = 1 be the only eigenvalue on the
unit circle, i.e., γ(T) := max{|λ| : λ ∈ σ(T), λ 6= 1} < 1. If the original system Ax = b
is consistent and T is convergent, the iteration (2.2) converges to a solution which
depends, in general, on the initial guess x0.

A related approach is defined by the alternating iterations

{

xk+1/2 = M−1
1 N1x

k + M−1
1 b

xk+1 = M−1
2 N2x

k+1/2 + M−1
2 b, k = 0, 1, . . . ,

(2.3)

where A = M1 − N1 = M2 − N2 are splittings of A, and x0 is the initial guess. The
convergence of alternating iterations is analyzed by Benzi and Szyld [5]. They con-
struct a single splitting A = B−C associated with the iteration matrix by eliminating
xk+1/2 from the second equation in (2.3) and obtain

xk+1 = M−1
2 N2M

−1
1 N1x

k + M−1
2 (N2M

−1
1)b, k = 0, 1, . . . ,(2.4)

which is in the form of (2.2) with T = M−1
2 N2M

−1
1 N1. Using this formulation, they

construct a unique splitting A = B − C with B−1C = T . The splitting is defined by
(Eq. (10) in [5])

B−1 = M−1
2 (M1 + M2 − A)M−1

1 .(2.5)

Clearly, the matrix M1 + M2 − A must be nonsingular for (2.5) to be well-defined.

4 M. BENZI AND B. UÇAR

2.3. Graph partitioning. Given an undirected graph G = (V, E), the prob-
lem of K-way graph partitioning by vertex separator (GPVS) asks for finding a
set of vertices VS of minimum size whose removal decomposes a graph into K dis-
connected subgraphs with balanced sizes. The problem is NP-hard [9]. Formally,
Π = {V1, . . . , VK ; VS} is a K-way vertex partition by vertex separator VS if the follow-
ing conditions hold: Vk ⊂ V and Vk 6= ∅ for 1 ≤ k ≤ K; Vk∩Vℓ = ∅ for 1 ≤ k < ℓ ≤ K
and Vk ∩ VS = ∅ for 1 ≤ k ≤ K;

⋃

k Vk ∪ VS = V ; there is no edge between vertices
lying in two different parts Vk and Vℓ for 1 ≤ k < ℓ ≤ K; Wmax/Wavg ≤ ǫ, where
Wmax is the maximum part size (defined as maxk |Vk|), Wavg is the average part size
(defined as (|V |− |VS |)/K), and ǫ is a given maximum allowable imbalance ratio. See
the works [1, 10, 14, 13, 16] for applications of the GPVS and heuristics for GPVS.

In the weighted GPVS problem, the vertices of the given undirected graph have
weights. The weight of the separator or a part is defined as the sum of the weights
of the vertices that they contain. The objective of the weighted GPVS problem is
to minimize the weight of the separator while maintaining a balance criterion on the
part weights.

3. Product splitting preconditioners. We will consider two preconditioners
based on regular splittings of A and combine them as in the alternating iterations (2.4)
to build an effective preconditioner for Krylov subspace methods.

The first preconditioner is the well-known block Jacobi preconditioner:

MBJ =

[

A11 O
O A22

]

.(3.1)

Note that A11 and A22 are nonsingular M -matrices, and A = MBJ − (MBJ −A) is a
regular splitting (in fact, an M -splitting).

Next, we consider another simple preconditioner:

MSC =

[

D11 A12

A21 A22

]

.(3.2)

Here D11 6= A11 stands for an approximation of A11; in practice, we take D11 to
be the diagonal matrix formed with the diagonal entries of A11. More generally, we
assume that D11 is a matrix obtained from A11 by setting off-diagonal entries to zero.
Thus, D11 is a nonsingular M -matrix [32, Theorem 3.12]. The Schur complement
matrix A22−A21D

−1
11 A12 is therefore well-defined and under the (very mild) structural

conditions given in [6, Theorem 3], it is also a nonsingular M -matrix. These conditions
are satisfied for the problems considered in this paper. Therefore MSC is a nonsingular
M -matrix and A = MSC − (MSC − A) is an M -splitting (hence, a regular splitting).

Since both MBJ and MSC define regular splittings, the product preconditioner
MPS given by

M−1
PS = M−1

SC(MBJ + MSC − A)M−1
BJ ,(3.3)

(see (2.5)) implicitly defines a weak regular splitting [5, Theorem 3.4]. Note that since
the matrix

MBJ + MSC − A =

[

D11 O
O A22

]

(3.4)

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 5

is invertible, M−1
PS is well-defined, and so is the corresponding splitting of A. We also

have

MPS = MBJ(MBJ + MSC − A)−1MSC

=

[

A11 O
O A22

] [

D−1
11 O
O A−1

22

] [

D11 A12

A21 A22

]

=

[

A11 A11D
−1
11 A12

A21 A22

]

,

and therefore

A − MPS =

[

O (A12 − A11D
−1
11 A12)

O O

]

.

It follows from the identity M−1
PSA = I +M−1

PS(A−MPS) that M−1
PSA (or AM−1

PS) has
at least n eigenvalues all equal to 1. Exactly one eigenvalue is zero; the remaining
m−1 all have positive real part and lie in a disk of radius ρ ≤ 1 and center at the point
(1, 0) in the complex plane, since A = MPS − (MPS − A) is a weak regular splitting
[22]. The better D11 approximates A11, the smaller ρ is, and the more clustered the
nonzero eigenvalues are around the point (1, 0). In general, a clustered spectrum near
(1, 0) implies fast convergence of the preconditioned Krylov subspace iteration.

Since the order of the A22 block m is an upper bound on the number of non-unit
eigenvalues, it is important to keep this number as small as possible. This is also
desirable from the point of view of parallel efficiency; see [6] and the next section.

Application of the MBJ preconditioner requires solving two uncoupled linear sys-
tems with the A11 and A22 blocks:

{

A11x1 = b1

A22x2 = b2

.(3.5)

Within a Krylov subspace method, these linear systems can be solved exactly or
approximately. When the blocks are large, as they are bound to be in realistic ap-
plications, exact solves are inefficient in terms of both time and storage, and inexact
solves must be used. Although the use of iterative methods is a possibility (leading
to an inner-outer iterative scheme), in this paper we perform inexact solves by means
of incomplete factorizations.

Application of the MSC preconditioner requires solving coupled equations of the
form

{

D11x1 + A12x2 = b1

A21x1 + A22x2 = b2

.(3.6)

A convenient way to solve the above system is to eliminate x1 from the second equation
using the first one and to solve the Schur complement system

(A22 − A21D
−1
11 A12)x2 = b2 − A21D

−1
11 b1(3.7)

for x2. Then substituting x2 into the first equation in (3.6) results in the system

D11x1 = b1 − A12x2 ,(3.8)

which is easy to solve.

6 M. BENZI AND B. UÇAR

Application of the MPS preconditioner requires the solution of a system of the
form (3.5), a matrix-vector multiply with the matrix MBJ + MSC −A given in (3.4),
and the solution of two systems of the form (3.7) and (3.8). In analogy with domain
decomposition methods for partial differential equations, (3.7) can be interpreted as
a kind of “coarse grid” correction, even though there may be no underlying physical
grid. Note that x2 corresponds to the interface unknowns. On the other hand, x1

corresponds to subdomain unknowns. Note, however, that (3.7) is embedded in the
global solve (3.6), which is one of the features that differentiate our approach from
standard two-level Schwarz methods.

4. Building the block structure. The first requirement to be met in permut-
ing the matrix A into 2 × 2 block structure (1.3) is that the permutation should be
symmetric. A symmetric permutation on the rows and columns of A guarantees that
A11 is an n × n invertible M -matrix, since the transition probability matrix P is
irreducible and A = I − PT . Moreover, A11 is diagonally dominant by columns.

The second requirement, as already discussed in Section 3, is to keep the order
m of A22 as small as possible. The requirement is important in order to have fast
convergence of the Krylov subspace method, since m is an upper bound on the number
of non-unit eigenvalues. Strictly speaking, this is true only if we assume exact solves
in the application of the preconditioner. In practice we will use inexact solves, and
rather than having n eigenvalues (or more) exactly equal to 1, there will be a cluster
of at least n eigenvalues near the point (1, 0). Still, we want this cluster to contain as
many eigenvalues as possible.

The second requirement is also desirable from the point of view of parallel im-
plementation. A possible parallelization approach would be constructing and solving
the system (3.7) on a single processor and then solving the system (3.8) in parallel.
This approach has been taken previously in parallelizing applications of approximate
inverse preconditioners [6]. Another possible approach would be parallelizing the so-
lution of (3.7) either by allowing redundancies in the computations (each processor
can form the whole system or a part of it) or by running a parallel solver on (3.7)
itself. In both cases, the solution with the Schur complement system constitutes a
serial bottleneck and requires additional storage space.

The third requirement, also stemming from the discussion in Section 3, is to
have D11 as close to A11 as possible in order to cluster the non-unit eigenvalues of
M−1

PSA. Meeting this requirements would likely help reduce the number of iterations
to convergence for the Krylov subspace method.

The fourth requirement, not necessary for the convergence analysis but crucial
for an efficient implementation, is that A11 should be block diagonal with subblocks
of approximately equal size and density. Given K subblocks in the (1,1) block A11,
the application of the MBJ preconditioner, i.e., solving the system (3.5), requires
K +1 independent solves: one with the A22 block and one with each subblock of A11.
Similarly, the application of the MSC preconditioner after solving (3.7) requires K
independent diagonal solves (scalings) for each subblock of D11. We note that this
form of the MSC preconditioner is a special case of a domain decomposition splitting,
as defined in [33]. Meeting this requirement for a serial implementation will enable
solution of very large systems, since the subblocks can be handled one at a time. In
any admissible parallelization, each of these subblocks would more likely be assigned
to a single processor. Therefore, maintaining balance on the sizes and the densities
of the subblocks will relate to maintaining balance on computational loads of the
processors. Furthermore, it is desirable that the sizes of these subblocks be larger

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 7

than the order m of A22, if possible, for the reasons given for the second requirement.
Meeting all of the above four requirements is a very challenging task. Therefore,

as a pragmatic approach we totally ignore the third one and apply well established
heuristics for addressing the remaining three requirements. As it is common, we
adopt the standard undirected graph model to represent a square matrix AN×N . The
vertices of the graph G(A) = (V, E) correspond to the rows and columns of A and the
edges correspond to the nonzeros of A. The vertex vi ∈ V represents the ith row and
the ith column of A, and there exists an edge (vi, vj) ∈ E if aij and aji are nonzero.

Consider a partitioning Π = {V1, . . . , VK ; VS} of G(A) with vertex separator VS .
The matrix A can be permuted into the 2× 2 block structure (1.3) by permuting the
rows and columns associated with the vertices in

⋃

k Vk before the rows and columns
associated with the vertices in VS . That is, VS defines the rows and columns of the
(2,2) block A22. Notice that the resulting permutation is symmetric, and hence the
first requirement is met. Furthermore, since GPVS tries to minimize the size of the
separator set VS , it tries to minimize the order of the block A22. Therefore, the
permutation induced by Π meets the second requirement as well.

Consider the A11 block defined by the vertices in
⋃

k Vk. The rows and columns
that are associated with the vertices in Vk can be permuted before the rows and
columns associated with the vertices in Vℓ for 1 ≤ k < ℓ ≤ K. Such a permutation
of A11 gives rise to diagonal subblocks. Since we have already constructed A22 using
VS , we end up with the following structure:

A =















A1 B1

A2 B2

. . .
...

AK BK

C1 C2 · · · CK AS















.

The diagonal blocks A1, . . . , AK correspond to the vertex parts V1, . . . , VK , and there-
fore have approximately the same order. The off-diagonal blocks Bi, Ci represent the
connections between the subgraphs, and the diagonal block AS represents the con-
nections between nodes in the separator set. Note that because of the irreducibility
assumption, each block Ai is a nonsingular M -matrix. Thus, graph partitioning in-
duces a reordering and block partitioning of the matrix A in the form (1.3) where

A11 = diag(A1, A2, . . . , AK), A22 = AS

and

A12 = [BT
1 BT

2 · · · BT
K]T , A21 = [C1 C2 · · · CK] .

Therefore, the permutation induced by the GPVS partially addresses the fourth re-
quirement. Note that the GPVS formulation ignores the requirement of balancing the
densities of the diagonal subblocks of A11. In fact, obtaining balance on the densities
of the diagonal blocks is a complex partitioning requirement that cannot be met be-
fore a partitioning takes place (see [24] for a possible solution) even with a weighted
GPVS formulation.

If the matrix is structurally nonsymmetric, which is common for matrices arising
from Markov chains, then A cannot be modeled with undirected graphs. In this case,
a 2 × 2 block structure can be obtained by partitioning the graph of A + AT .

8 M. BENZI AND B. UÇAR

Table 5.1

Properties of the generator matrices.

Matrix number of number of nonzeros
rows/cols total average row col

N row/col min max min max
mutex09 65535 1114079 17.0 16 17 16 17
mutex12 263950 4031310 15.3 9 21 9 21
ncd07 62196 420036 6.8 2 7 2 7
ncd10 176851 1207051 6.8 2 7 2 7
qnatm06 79220 533120 6.7 3 9 4 7
qnatm07 130068 875896 6.7 3 9 4 7
tcomm16 13671 67381 4.9 2 5 2 5
tcomm20 17081 84211 4.9 2 5 2 5
twod08 66177 263425 4.0 2 4 2 4
twod10 263169 1050625 4.0 2 4 2 4

5. Numerical experiments. In this section, we report on experimental results
obtained with a Matlab 6 implementation on a 1.2GHz Sun Fire V880 with 2 Gbytes
of main memory. The main goal was to test the product splitting preconditioner
and to compare it with a few other preconditioners. The Krylov method used was
GMRES [27]. For completeness we performed experiments with the stationary itera-
tions corresponding to the various splittings (without GMRES acceleration), but they
were found to converge too slowly to be competitive with preconditioned GMRES.
Therefore, we do not show these results.

The various methods were tested on the generator matrices of some Markov chain
models provided in the MARCA (MARkov Chain Analyzer) collection [29]. The
models are discussed in [12, 23, 25] and have been used to compare different solution
methods in [6, 11] and elsewhere. These matrices are infinitesimal generators of time-
continuous Markov chains, but can be easily converted (as we did) to the form A =
I−PT , with P row-stochastic, so that A corresponds to a discrete-time Markov chain,
known as the embedded Markov chain; see [30, Chapter 1.4.3]. The preconditioning
techniques described in this paper can be applied to either form of the generator
matrix.

We performed a large number of tests on numerous matrices; here we present a
selection of results for a few test matrices, chosen to be representative of our overall
findings.

Table 5.1 displays the properties of the test matrices. Each matrix is named by
its family followed by its index in the family. For example, mutex09 refers to the
9th matrix in the mutex family. The matrices from the mutex and ncd families are
structurally symmetric, the matrices from the qnatm and twod families are struc-
turally nonsymmetric, and the matrices from the tcomm family are very close to being
structurally symmetric—the nonzero patterns of tcomm20 and tcomm16 differ from
the nonzero patterns of their transposes in only 60 locations.

We compared the product preconditioner (PS) with its factors block Jacobi (BJ)
and Schur complement-based (SC) preconditioners. We also compared PS with the
block Gauss-Seidel (BGS) and block successive overrelaxation (BSOR) precondition-
ers, where the preconditioner matrices are

MBGS =

[

A11 A12

O A22

]

or MBGS =

[

A11 O
A21 A22

]

,

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 9

MBSOR =

[

1

ω A11 A12

O 1

ωA22

]

or MBSOR =

[

1

ω A11 O
A21

1

ω A22

]

.

In agreement with the previously reported results [11] on the MARCA collection,
we observed that ω = 1.0 (which reduces the BSOR to BGS) or very close to 1.0 is
nearly always the best choice of the relaxation parameter for BSOR. We also observed
that the block lower triangular versions of the BGS and BSOR preconditioners are
indistinguishable from the block upper triangular versions under either the storage
or performance criteria. Therefore, we report only the experiments with the upper
triangular BGS preconditioner. Note that application of the BGS preconditioner
requires two linear system solutions (one with A11 and one with A22) and a matrix-
vector multiply with A12.

5.1. Properties of the block structure and the preconditioners. We par-
titioned the matrix into the 2× 2 block structure (1.3) using Metis [17]. In all cases,
the partitioning time is negligible compared to the solve time. For the structurally
symmetric mutex and ncd matrices, we used the graph of A, and for the other matri-
ces we used the graph of A + AT as mentioned in Section 4. As discussed in Section
4, we maintain balance on the size, rather than the densities, of the subblocks of A11.
We have conducted experiments with K = 2, 4, 8, 16, and 32 subblocks in the (1,1)
block. For each K value, K-way partitioning of a test matrix constitutes a partition-
ing instance. Since Metis incorporates randomized algorithms, it was run 20 times
starting from different random seeds for each partitioning instance. The maximum
allowable imbalance ratio among the part weights was specified as 25%. In all par-
titioning instances except the mutex matrices, the imbalance ratios among the parts
were within the specified limit. Therefore, the partition with the minimum separator
size was chosen for those matrices. For the mutex matrices, we chose the best among
the partitions that satisfies the imbalance ratio, if any. Otherwise, we chose the one
with smallest imbalance (this was the case in K = 16- and 32-way partitioning of
both of the matrices and the resulting imbalance was 35%). The properties of the
2 × 2 block structures corresponding to these best partitions are given in Table 5.2.

As seen from Table 5.2, only the mutex matrices have a large number of rows in
the second row block of A, i.e., a large separator set. For these matrices, only for
the K = 2-way partitioning instances the average part size is larger than the size of
the separator set. For the other matrices, the average part size is larger than the size
of the second row block in all partitioning instances with K = 2, 4, 8, and 16 except
in K = 16-way partitioning of ncd07 and qnatm06. The average separator sizes for
all K values are given at the bottom of the table. These averages contain the mutex

matrices; without them, the average separator and part sizes for K = 16 are 0.043
and 0.060, respectively.

An interesting observation is that in all partitioning instances, the (2,2) block is
always very sparse; the minimum and maximum number of nonzeros per row in the
(2,2) block are 1.0 (in K = 2, 4, and 8-way partitioning of mutex12 and in almost all
ncd partitioning instances) and 4.2 (in K = 16-way partitioning of mutex09) where
the overall average is 1.67. All matrices, except mutex12 and mutex09 have small
numbers of nonzeros per row. Therefore, a very sparse separator is most likely to
occur in partitioning these matrices. However, the separator being highly sparse
in different Markov chain models is noteworthy, especially from the parallelization
perspective. For example, the (2,2) block may be duplicated on all processors to
overcome the serial bottleneck of Schur complement solves with only a small storage
overhead, or the off-diagonal entries of the (2,2) block may be selectively dropped to

10 M. BENZI AND B. UÇAR

Table 5.2

Properties of the partitions and the induced block structures for the test matrices. The column
“sep” refers to the number of rows in the 2nd row block of A normalized by the number of rows in
A, i.e., m/N ; the column “part” refers to the average part size normalized by the number of rows in
A, i.e., (n/K)/N ; the columns Aij for i, j = 1, 2 refer to the number of nonzeros in the (i, j) block
normalized by the number of nonzeros in A, i.e., nnz(Aij)/nnz(A).

Matrix K Partition Blocks
sep part A11 A12 A21 A22

mutex09 2 0.205 0.398 0.618 0.177 0.177 0.028
4 0.337 0.166 0.363 0.300 0.300 0.037
8 0.415 0.073 0.237 0.348 0.348 0.068
16 0.469 0.033 0.177 0.354 0.354 0.116
32 0.473 0.016 0.138 0.389 0.389 0.084

mutex12 2 0.141 0.429 0.621 0.185 0.185 0.009
4 0.225 0.194 0.397 0.294 0.294 0.015
8 0.282 0.090 0.243 0.369 0.369 0.018
16 0.333 0.042 0.162 0.389 0.389 0.060
32 0.343 0.021 0.124 0.411 0.411 0.053

ncd07 2 0.015 0.493 0.972 0.013 0.013 0.002
4 0.028 0.243 0.946 0.025 0.025 0.004
8 0.047 0.119 0.910 0.041 0.041 0.007
16 0.071 0.058 0.866 0.062 0.062 0.010
32 0.099 0.028 0.813 0.086 0.086 0.015

ncd10 2 0.012 0.494 0.976 0.011 0.011 0.002
4 0.023 0.244 0.957 0.020 0.020 0.003
8 0.036 0.121 0.933 0.031 0.031 0.005
16 0.057 0.059 0.893 0.049 0.049 0.009
32 0.076 0.029 0.856 0.066 0.066 0.012

qnatm06 2 0.012 0.494 0.979 0.009 0.009 0.003
4 0.024 0.244 0.957 0.019 0.019 0.005
8 0.041 0.120 0.927 0.032 0.032 0.009
16 0.068 0.058 0.877 0.055 0.055 0.013
32 0.100 0.028 0.819 0.081 0.081 0.019

qnatm07 2 0.009 0.496 0.986 0.005 0.005 0.004
4 0.019 0.245 0.966 0.015 0.015 0.004
8 0.034 0.121 0.940 0.026 0.026 0.008
16 0.054 0.059 0.903 0.043 0.043 0.011
32 0.081 0.029 0.854 0.065 0.065 0.017

tcomm16 2 0.002 0.499 0.996 0.002 0.002 0.001
4 0.007 0.248 0.988 0.005 0.005 0.002
8 0.016 0.123 0.973 0.011 0.011 0.005
16 0.034 0.060 0.942 0.024 0.024 0.010
32 0.059 0.029 0.898 0.042 0.042 0.018

tcomm20 2 0.002 0.499 0.997 0.001 0.001 0.001
4 0.005 0.249 0.991 0.004 0.004 0.002
8 0.013 0.123 0.978 0.009 0.009 0.004
16 0.027 0.061 0.954 0.019 0.019 0.008
32 0.054 0.030 0.908 0.038 0.038 0.016

twod08 2 0.002 0.499 0.997 0.001 0.001 0.001
4 0.006 0.249 0.991 0.003 0.003 0.003
8 0.013 0.123 0.980 0.007 0.007 0.007
16 0.021 0.061 0.968 0.011 0.011 0.011
32 0.035 0.030 0.947 0.018 0.018 0.018

twod10 2 0.002 0.499 0.997 0.001 0.001 0.001
4 0.004 0.249 0.994 0.002 0.002 0.002
8 0.007 0.124 0.989 0.004 0.004 0.004
16 0.012 0.062 0.982 0.006 0.006 0.006
32 0.019 0.031 0.972 0.009 0.009 0.009

Averages
2 0.040 0.480 0.914 0.040 0.040 0.005
4 0.068 0.233 0.855 0.069 0.069 0.008
8 0.090 0.114 0.811 0.088 0.088 0.013
16 0.115 0.055 0.772 0.101 0.101 0.026
32 0.134 0.027 0.733 0.121 0.121 0.026

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 11

Fig. 5.1. Sparsity pattern of the matrix qnatm06 and structure induced by K-way partitioning
for K = 4, 8, 16.

yield an approximate Schur complement in order to reduce the storage requirements.
As an example of the partitioning outcomes, Figure 5.1 shows the sparsity pattern
of the matrix qnatm06 followed by the block structure of the K-way partitionings for
K = 4, 8, 16.

Each subblock of A11 and the (2,2) block A22 are factored using the incomplete
LU factorization (ILUTH) with threshold parameter τ = 0.01 for the qnatm matrices
and τ = 0.001 for the other matrices. The threshold of 0.001 was too small for the
qnatm matrices: the resulting preconditioners had 8 times more nonzeros than the
generator matrices. The densities of the preconditioners, i.e., the number of nonzeros
in the matrices appearing in the preconditioner solve phase divided by the number of
nonzeros in the corresponding generator matrices, are given in Table 5.3. The number
of nonzeros in the preconditioner solve phase of BJ is the total number of nonzeros
in the approximate ILU factors of A11 and A22. The number of nonzeros in the
preconditioner solve phase of SC is the total number of nonzeros in the approximate
ILU factors of the Schur complement matrix in (3.7), plus the number of nonzeros
in A21 and A12. The number of nonzeros in the preconditioner solve phase of PS
is computed by adding the number of nonzeros in MBJ + MSC − A to those of the

12 M. BENZI AND B. UÇAR

BJ and SC preconditioners. The number of nonzeros for the BGS preconditioner is
the total number of nonzeros in the ILU factors of A11 and A22 plus the number of
nonzeros in A21.

Since the number of nonzeros in the off-diagonal blocks A12 and A21 increases
for increasing K, the number of nonzeros in the BJ preconditioners decreases for
increasing K. By the same token, the number of nonzeros in the SC preconditioners
increases for increasing K. Since the proposed preconditioner PS uses those two
preconditioners and an additional n+nnz(A22) ≈ N nonzeros, the number of nonzeros
in the PS preconditioners is not heavily affected by the increasing number of parts. As
seen from the averages given in the bottom of the table, the product preconditioners
have around 2.5 times the nonzeros of the generator matrices for all K, whereas the
BGS preconditioners contain around 1.97 times the nonzeros of the generator matrices,
on the average. Thus, on average, the PS preconditioners contain 28% more nonzeros
than the BGS preconditioners.

5.2. Performance comparisons. The underlying Krylov subspace method was
GMRES, restarted every 50 iterations (if needed). Right preconditioning was used in
all the tests. The stopping criterion was set as

‖rk‖2/‖r0‖2 < 10−10 ,

where rk is the residual at the kth iteration and r0 is the initial residual. We al-
low at most 250 iterations, i.e., 5 restarts, for the GMRES iteration. Therefore, the
number 250 in the following tables marks the cases in which GMRES failed to de-
liver solutions with the prescribed accuracy within 250 iterations. For each matrix,
only one initial solution is chosen at random (with positive entries) and normalized
to have an ℓ1-norm of 1.0. In other words, the initial guess is a random probabil-
ity distribution vector. The same initial guess is used for all partitioning instances
of a matrix with all preconditioners. Iteration counts for GMRES(50) on the var-
ious test matrices with no permutation or preconditioning (GMRES) and with the
preconditioners BJ, SC, BGS, and PS are given in Table 5.4. The ℓ1-norms of the
residuals corresponding to the approximate solutions returned by GMRES(50) were
between 1.9889e-17 and 1.6098e-11 for the converged instances. Note that without
preconditioning, GMRES(50) converges only for the mutex matrices.

As seen from Table 5.4, the BGS preconditioner is consistently better than the BJ
and SC preconditioners. The proposed PS preconditioner, although constructed from
the two preconditioners outperformed by BGS, is in turn consistently better than the
BGS preconditioner. The last five rows of the table show the performance of the
proposed PS preconditioner with respect to the BGS preconditioner. These numbers
are computed by first normalizing the number of iterations of BGS and PS by the
number of iterations required by BGS preconditioner with K = 2-way partitioning for
each matrix. Then, the averages of these numbers are displayed in the last five rows.
We did not display the averages for the BJ and SC preconditioners because they do
not lead to convergence in all instances. As seen from the normalized averages, the
proposed PS preconditioner outperforms the BGS one by a factor of two in terms
of iteration counts, at the expense of an increase of just 28% (approximately) in the
number of nonzeros (see Table 5.3).

Recall from Section 3 that the PS preconditioner is given by M−1
PS = M−1

BJ(MBJ +
MSC − A)M−1

SC . Consider the matrix in the middle. It is composed of the diagonal
of A11 and the (2,2) block A22. Since the A22 block is very sparse, i.e., close to
being a diagonal matrix, the effect of the multiply with (MBJ +MSC −A) is merely a

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 13

Table 5.3

The densities of the preconditioners, i.e., the total number of nonzeros in the blocks appearing
in the preconditioning matrices divided by the number of nonzeros in the corresponding generator
matrices.

Matrix K Preconditioners
BJ SC BGS PS

mutex09 2 0.75 0.67 0.93 1.50
4 0.47 1.26 0.77 1.81
8 0.37 1.50 0.72 1.97
16 0.36 1.56 0.72 2.07
32 0.28 1.78 0.67 2.17

mutex12 2 0.68 0.62 0.87 1.37
4 0.47 1.01 0.76 1.55
8 0.31 1.34 0.68 1.72
16 0.29 1.51 0.68 1.90
32 0.24 1.58 0.65 1.92

ncd07 2 0.88 0.18 0.89 1.21
4 0.86 0.21 0.89 1.22
8 0.82 0.25 0.86 1.22
16 0.79 0.30 0.85 1.23
32 0.75 0.36 0.84 1.25

ncd10 2 0.72 0.17 0.73 1.04
4 0.71 0.19 0.73 1.05
8 0.68 0.22 0.72 1.05
16 0.66 0.26 0.71 1.07
32 0.64 0.30 0.71 1.09

qnatm06 2 3.43 0.18 3.44 3.77
4 3.31 0.22 3.33 3.68
8 3.17 0.27 3.21 3.60
16 2.93 0.36 2.98 3.44
32 2.65 0.46 2.73 3.26

qnatm07 2 3.48 0.17 3.48 3.80
4 3.38 0.20 3.39 3.73
8 3.25 0.25 3.27 3.65
16 3.06 0.31 3.11 3.53
32 2.83 0.40 2.89 3.38

tcomm16 2 2.12 0.21 2.13 2.53
4 2.10 0.22 2.11 2.52
8 2.06 0.24 2.07 2.50
16 1.97 0.27 2.00 2.45
32 1.88 0.32 1.92 2.41

tcomm20 2 2.19 0.21 2.19 2.60
4 2.17 0.21 2.18 2.59
8 2.13 0.23 2.14 2.57
16 2.06 0.26 2.08 2.52
32 1.93 0.31 1.97 2.45

twod08 2 2.38 0.25 2.38 2.88
4 2.36 0.26 2.36 2.87
8 2.33 0.27 2.34 2.86
16 2.30 0.29 2.31 2.84
32 2.24 0.31 2.25 2.81

twod10 2 3.86 0.25 3.86 4.37
4 3.84 0.26 3.84 4.35
8 3.80 0.26 3.80 4.31
16 3.73 0.27 3.74 4.26
32 3.66 0.28 3.67 4.20

Averages
2 2.05 0.29 2.09 2.51
4 1.97 0.40 2.04 2.54
8 1.89 0.48 1.98 2.54
16 1.82 0.54 1.92 2.53
32 1.71 0.61 1.83 2.50

14 M. BENZI AND B. UÇAR

Table 5.4

Number of iterations to reduce the ℓ2-norm of the initial residual by ten orders of magnitude
using GMRES(50) with at most 5 restarts. The number 250 means that the method did not converge
in 250 iterations.

Matrix GMRES Preconditioned GMRES
K Preconditioners

BJ SC BGS PS
mutex09 97 2 25 27 13 8

4 29 23 15 9
8 30 20 15 8

16 26 22 14 9
32 29 17 15 9

mutex12 91 2 27 23 14 8
4 29 20 15 7
8 29 18 15 7

16 27 17 14 8
32 28 17 15 8

ncd07 250 2 38 250 25 16
4 201 250 69 17
8 250 250 99 19

16 250 250 99 21
32 250 250 158 22

ncd10 250 2 42 250 29 19
4 250 250 181 21
8 205 250 101 22

16 250 250 145 25
32 250 250 188 26

qnatm06 250 2 64 250 41 39
4 92 250 45 39
8 120 250 50 42

16 200 250 62 45
32 250 250 86 49

qnatm07 250 2 65 250 45 44
4 94 250 52 46
8 138 250 71 48

16 215 250 87 55
32 245 250 98 68

tcomm16 250 2 33 250 19 15
4 50 250 27 20
8 100 250 36 26

16 250 250 91 42
32 250 250 79 42

tcomm20 250 2 31 250 19 16
4 41 250 24 20
8 101 250 36 26

16 250 250 73 40
32 250 250 200 101

twod08 250 2 26 250 14 9
4 34 250 18 11
8 43 250 22 16

16 51 250 26 21
32 58 250 30 25

twod10 250 2 35 250 18 12
4 46 250 24 19
8 52 250 27 22

16 50 250 26 21
32 87 250 37 29

Normalized averages with respect to 2-way BGS
2 - - 1.00 0.74
4 - - 1.88 0.85
8 - - 1.93 0.98

16 - - 2.64 1.23
32 - - 3.82 1.67

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 15

Table 5.5

Running times (in seconds) for GMRES(50) without preconditioning (GMRES column) and
with BJ, SC, BGS and PS preconditioning for the mutex matrices.

Matrix GMRES Preconditioned GMRES
Total K Total time
time Preconditioner construction Solve
Solve BJ SC BGS PS BJ SC BGS PS

mutex09 19.6 2 1.8 0.7 2.0 3.2 11.0 8.2 5.8 5.0
4 0.8 3.2 1.0 4.5 11.8 9.0 6.0 6.2
8 0.5 4.1 0.7 5.2 11.9 8.8 5.8 6.0

16 0.4 7.9 0.7 8.9 10.2 10.4 5.4 6.9
32 0.3 5.2 0.5 6.1 11.2 8.4 5.8 7.0

mutex12 79.1 2 6.5 2.6 7.2 11.7 51.9 26.7 26.7 21.0
4 3.6 6.5 4.3 12.4 52.0 28.5 26.9 19.8
8 1.9 12.3 2.7 16.5 49.6 30.1 26.0 21.3

16 1.7 42.4 2.5 46.4 46.4 30.7 23.9 25.3
32 1.2 35.5 2.1 38.8 47.0 31.6 25.3 25.2

scaling. Therefore, we conducted experiments with the PS preconditioner without the
matrix-vector multiplies with (MBJ +MSC −A) and observed that in 41 partitioning
instances (even with the mutex matrices that have relatively denser A22) the number
of iterations did not change at all, in 3 of the cases omitting the multiply decreased
the number of iterations by 1, in 4 cases it increased the number of iterations by 1,
and only in K = 32-way partitioning of tcomm20 it increased the number of iterations
by 5.

We close this section by discussing running times for GMRES. The timings are
obtained using Matlab 6’s cputime command and are in seconds. In Table 5.5, the to-
tal time for GMRES without preconditioning is the total time spent in performing the
GMRES iterations. In Table 5.5 and 5.6, the total time for the preconditioned GM-
RES is dissected into the preconditioner construction and the solve phases. We first
discuss the case of mutex matrices, since all the preconditioners lead to convergence
for these matrices. In all partitioning instances of the mutex matrices, the proposed
PS preconditioner solve phase time is less than the solve phase times of its factors BJ
and SC preconditioners. Furthermore, in half of the instances its solve phase time is
smaller than the BGS preconditioner solve phase time. On the other hand, the total
running time of BGS preconditioner is always the minimum except in K = 2-way
partitioning of mutex12 in which case BJ gives the minimum total running time. We
observe that the mutex matrices are the worst case for the construction of the PS
preconditioner, since the size of the separator set is very large already for K = 2, thus
forming the Schur complement is very time-consuming.

Table 5.6 contains the running times of the preconditioned GMRES with the BGS
and PS preconditioners for the larger matrices in each matrix family. As seen from the
table, for these matrices (whose partitions have small separators) the preconditioner
construction phases’ time are always smaller than the solve phases’ time. Furthermore,
the construction times for the BGS and PS preconditioners are almost the same, and
PS is faster than BGS (due to smaller number of iterations) in all instances except
for K = 2-way partitioning of qnatm07. Note that the ith iteration of GMRES
after a restart requires i inner product computations with vectors of length N [2].
Therefore, the performance gains in the solve phase with the PS preconditioners are
not only due to the savings in preconditioner solves and matrix-vector multiplies,
but also to the savings in the inner product computations. What is important in this

16 M. BENZI AND B. UÇAR

Table 5.6

Running times (in seconds) for GMRES(50) with BGS and PS preconditioners for the larger
matrices in each family.

Matrix K Total time
Precond const Solve
BGS PS BGS PS

ncd10 2 1.3 1.7 28.1 19.8
4 1.3 1.7 193.0 22.0
8 1.2 1.6 108.6 23.4

16 1.2 1.6 153.7 27.0
32 1.1 1.6 198.4 28.5

qnatm07 2 20.9 21.2 46.5 49.6
4 14.9 15.2 53.7 50.8
8 9.6 10.0 70.3 53.4

16 6.5 6.9 85.8 61.1
32 4.9 5.3 93.6 70.9

tcomm20 2 0.2 0.2 1.3 1.2
4 0.2 0.2 1.7 1.5
8 0.2 0.2 2.6 2.0

16 0.2 0.2 5.6 3.3
32 0.1 0.2 15.8 8.8

twod10 2 17.3 17.6 31.1 22.6
4 14.5 14.8 42.4 35.9
8 6.6 6.9 47.3 42.0

16 6.1 6.4 45.4 39.6
32 5.2 5.5 67.1 56.4

table is how the total time with the PS preconditioner increases as the number of parts
increases. These increases are fairly modest compared to the number of parts. Except
for tcommm20, which is rather small, the solution times with 32 parts are at most 3
times larger than the solution times with 2 parts. This heralds considerable speed-ups
in the total solution time in a parallel computing environment. Additionally, this also
gives leeway in parallelizing the iterations.

6. Conclusions. We have described and investigated a new preconditioning
technique for Markov chain problems. The idea is to combine two simple precondition-
ers to get a new, more effective one. This “product splitting” preconditioner relies on
a block 2× 2 structure of the generator matrix, which is obtained through graph par-
titioning. Our approach is somewhat similar to a two-level, non-overlapping additive
Schwarz (block Jacobi) preconditioner with a multiplicative “coarse grid correction”
represented by an approximate Schur complement solve. Numerical experiments with
preconditioned GMRES using test matrices from MARCA indicate that the product
preconditioner is much more effective than the two constituent preconditioners, at the
expense of only a slight increase in storage requirements. The product splitting was
also found to be competitive in most cases with an appropriate block Gauss–Seidel
preconditioner. Furthermore, the numerical experiments indicate that, for most prob-
lems, the number of iterations grows slowly with the number of parts (subdomains).
This suggests that the product splitting preconditioner should perform very well in a
parallel implementation.

Acknowledgment. We thank Billy Stewart for making the MARCA software
available.

PRODUCT PRECONDITIONING FOR MARKOV CHAINS 17

REFERENCES

[1] C. Aykanat, A. Pınar, and U. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. A. Van Der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] M. Benzi and T. Dayar, The arithmetic mean method for finding the stationary vector of
Markov chains, Parallel Algorithms Appl., 6 (1995), pp. 25–37.

[4] M. Benzi, F. Sgallari, and G. Spaletta, A parallel block projection method of the Cimmino
type for finite Markov chains, in Computations with Markov Chains, W. J. Stewart, ed.,
Kluwer Academic Publishers, Boston/London/Dordrecht, 1995, pp. 65–80.

[5] M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative
methods with applications to alternating methods, Numer. Math., 76 (1997), pp. 309–321.

[6] M. Benzi and M. Tůma, A parallel solver for large-scale Markov chains, Appl. Numer. Math.,
41 (2002), pp. 135–153.

[7] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca-
demic Press, New York, 1979. Reprinted by SIAM, Philadelphia, PA, 1994.

[8] P. Buchholz, M. Fischer, and P. Kemper, Distributed steady state analysis using Kronecker
algebra, in Numerical Solutions of Markov Chains (NSMC’99), B. Plateau, W. J. Stewart,
and M. Silva, eds., Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 76–95.

[9] T. N. Bui and C. Jones, Finding good approximate vertex and edge partitions is NP hard,
Inform. Process. Lett., 42 (1992), pp. 153–159.

[10] T. N. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization, in Proc.
6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM, Philadelphia, 1993,
pp. 445–452.

[11] T. Dayar and W. J. Stewart, Comparison of partitioning techniques for two-level iterative
solvers of large, sparse Markov chains, SIAM J. Sci. Comput., 21 (2000), pp. 1691–1705.

[12] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplications
in stochastic automata networks, J. ACM, 45 (1998), pp. 381–414.

[13] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Supercom-
puting’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM),
ACM Press, New York, NY, USA, 1995, p. 28.

[14] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection
ordering, SIAM J. Sci. Comput., 20 (1998), pp. 468–489.

[15] M. Jarraya and D. El Baz, Asynchronous iterations for the solution of Markov systems,
in Numerical Solutions of Markov Chains (NSMC’99), B. Plateau, W. J. Stewart, and
M. Silva, eds., Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 335–338.

[16] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[17] G. Karypis and V. Kumar, MeTiS: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices version 4.0,
University of Minnesota, Department of Computer Science / Army HPC Research Center,
Minneapolis, MN 55455, September 1998.

[18] W. J. Knottenbelt and P. G. Harrison, Distributed disk-based solution techniques for large
Markov models, in Numerical Solutions of Markov Chains (NSMC’99), B. Plateau, W. J.
Stewart, and M. Silva, eds., Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999,
pp. 58–75.

[19] I. Marek and D. B. Szyld, Algebraic Schwarz methods for the numerical solution of Markov
chains, Linear Algebra Appl., 386 (2004), pp. 67–81.

[20] C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Rev., 31 (1989), pp. 240–272.

[21] V. Migallón, J. Penadés, and D. B. Szyld, Experimental studies of parallel iterative so-
lutions of Markov chains with block partitions, in Numerical Solutions of Markov Chains
(NSMC’99), B. Plateau, W. J. Stewart, and M. Silva, eds., Prensas Universitarias de
Zaragoza, Zaragoza, Spain, 1999, pp. 96–110.

[22] M. Neumann and R. J. Plemmons, Convergent nonnegative matrices and iterative methods
for consistent linear systems, Numer. Math., 31 (1978), pp. 265–279.

[23] B. Philippe, Y. Saad, and W. J. Stewart, Numerical methods in Markov chain modeling,
Oper. Res., 40 (1992), pp. 1156–1179.

[24] A. Pınar and B. Hendrickson, Partitioning for complex objectives, Proceedings of the 15th
International Parallel and Distributed Processing Symposium (CDROM), IEEE Computer

18 M. BENZI AND B. UÇAR

Society Washington, DC, USA, 2001, p. 121.
[25] P. K. Pollet and S. E. Stewart, An efficient procedure for computing quasi-stationary

distributions of Markov chains with sparse transition structure, Adv. Appl. Probab., 26
(1994), pp. 68–79.

[26] Y. Saad, Preconditioned Krylov subspace methods for the numerical solution of Markov chains,
in Computations with Markov Chains, W. J. Stewart, ed., Kluwer Academic Publishers,
Boston/London/Dordrecht, 1995, pp. 49–64.

[27] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[28] H. Schneider, Theorems on M-splittings of a singular M-matrix which depend on graph struc-
ture, Linear Algebra Appl., 58 (1984), pp. 407–424.

[29] W. J. Stewart, MARCA Models: A collection of Markov chain models. URL
http://www.csc.ncsu.edu/faculty/stewart/MARCA Models/MARCA Models.html.

[30] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

[31] D. B. Szyld, Equivalence of convergence conditions for iterative methods for singular equa-
tions, Numer. Linear Algebra Appl., 1 (1994), pp. 151–154.

[32] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
Second Edition, revised and expanded, Springer, Berlin, Heidelberg, New York, 2000.

[33] R. E. White, Domain decomposition splittings, Linear Algebra Appl., 316 (2000), pp. 105–112.

