
Minimizing Communication Cost in Fine-Grain
Partitioning of Sparse Matrices�
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Abstract. We show a two-phase approach for minimizing various com-
munication-cost metrics in fine-grain partitioning of sparse matrices for
parallel processing. In the first phase, we obtain a partitioning with the
existing tools on the matrix to determine computational loads of the
processor. In the second phase, we try to minimize the communication-
cost metrics. For this purpose, we develop communication-hypergraph
and partitioning models. We experimentally evaluate the contributions
on a PC cluster.

1 Introduction

Repeated matrix-vector multiplications (SpMxV) y = Ax that involve the same
large, sparse, structurally symmetric or nonsymmetric square or rectangular ma-
trix are kernel operations in various iterative solvers. Efficient parallelization of
these solvers requires matrix A to be partitioned among the processors in such
a way that communication overhead is kept low while maintaining computa-
tional load balance. Because of possible dense vector operations, some of these
methods require symmetric partitioning on the input and output vectors, i.e,
conformal partitioning on x and y. However, quite a few of these methods allow
unsymmetric partitionings, i.e., x and y may have different partitionings. The
standard graph partitioning model has been widely used for one-dimensional
(1D) partitioning of sparse matrices. Recently, Çatalyürek and Aykanat [3,4]
and others [9,10,11] demonstrated some flaws and limitations of this model and
developed alternatives. As noted in [10], most of the existing models consider
minimizing the total communication volume. Depending on the machine archi-
tecture and the problem characteristics, communication overhead due to message
latency may be a bottleneck as well [8]. Furthermore, maximum communication
volume and latency handled by a single processor may also have crucial impacts
on the parallel performance. In our previous work [17], we addressed these four
communication-cost metrics in 1D partitioning of sparse matrices.

The literature on 2D matrix partitioning is rare. The 2D checkerboard par-
titioning approaches proposed in [12,15,16] are suitable for dense matrices or
sparse matrices with structured nonzero patterns that are difficult to exploit. In
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particular, these approaches do not exploit sparsity to reduce the communica-
tion volume. Çatalyürek and Aykanat [3,6,7] proposed hypergraph models for
2D coarse-grain and fine-grain sparse matrix partitionings. In the coarse-grain
model, a matrix is partitioned in a checkerboard-like style. In the fine-grain
model, a matrix is partitioned on nonzero basis. The fine-grain model is re-
ported to achieve better partitionings than the other models in terms of the
total communication volume metric [6]. However, it also generates worse parti-
tionings than the other models in terms of the total number of messages met-
ric [6]. In this work, we adopt our two phase approach [17] to minimize the four
communication-cost metrics in the fine-grain partitioning of sparse matrices. We
show how to apply our communication hypergraph model to obtain unsymmetric
partitioning and develop novel models to obtain symmetric partitioning.

2 Preliminaries

A hypergraph H = (V, N ) is defined as a set of vertices V and a set of nets.
Every net ni is a subset of vertices. Let dj denote the number of nets containing a
vertex vj . Weights can be associated with vertices. Π ={V1, · · · , VK} is a K-way
vertex partition of H = (V, N ) if each part Vk is non-empty, parts are pairwise
disjoint, and the union of parts gives V. In Π, a net is said to connect a part
if it has at least one vertex in that part. Connectivity λi of a net ni denotes
the number of parts connected by ni. A net nj is said to be cut if λj > 1 and
uncut otherwise. The set of cut and uncut nets are called external and internal
nets, respectively. In Π, the weight of a part is the sum of the weights of the
vertices in that part. In the hypergraph partitioning problem, the objective is to
minimize the cutsize: cutsize(Π) =

∑

ni∈N
(λi − 1). (1)

This objective is referred to as the connectivity−1 cutsize metric [14]. The par-
titioning constraint is to satisfy a balancing constraint on the part weights, i.e.,

Wmax ≤ (1 + ε)Wavg (2)

where Wmax is the weight of the part with the maximum weight and Wavg is the
average part weight, and ε is an imbalance ratio. This problem is NP-hard [14].

A recent variant of the above problem is called multi-constraint hypergraph
partitioning [3,7,13]. In this problem, a vertex has a vector of weights. The
partitioning objective is the same as above, however, the partitioning constraint
is to satisfy a set of balancing constraints, one for each type of the weights.

In the fine-grain hypergraph model of Çatalyürek and Aykanat [6], an M ×N
matrix A with Z nonzeros is represented as a hypergraph H = (V, N ) with
|V| = Z vertices and |N | = M + N nets for 2D partitioning. There exists one
vertex vij for each nonzero aij . There exists one net mi for each row i and one net
nj for each column j. Each row-net mi and column-net nj contain all vertices vi∗
and v∗j , respectively. Each vertex vij corresponds to scalar multiplication aijxj .
Hence, the computational weight associated with a vertex is 1. Each row-net mi

represents the dependency of yi on the scalar multiplications with ai∗’s. Each



928 B. Uçar and C. Aykanat

column-net nj represents the dependency of scalar multiplications with a∗j ’s on
xj . With this model, the problem of 2D partitioning a matrix among K proces-
sors reduces to the K-way hypergraph partitioning problem. In this model, mini-
mizing the cutsize while maintaining the balance on the part weights corresponds
to minimizing the total communication volume and maintaining the balance on
the computational loads of the processors. An external column-net represents
the communication volume requirement on a x-vector entry. This communica-
tion occurs in expand phase, just before the scalar multiplications. An external
row-net represents the communication volume requirement on a y-vector entry.
This communication occurs in fold phase, just after the scalar multiplications.
Çatalyürek and Aykanat [6] assign the responsibility of expanding xi and folding
yi to the processor that holds aii to obtain symmetric partitioning. Note that for
the unsymmetric partitioning case, one can assign xi to any processor holding
a nonzero in column i without any additional communication-volume overhead.
A similar opportunity exists for yi. In the symmetric partitioning case, however,
xi and yi may be assigned to a processor holding nonzeros both in the row and
column i. In this work, we try to exploit the freedom in assigning vector elements
to address the four communication-cost metrics.

A 10 × 10 matrix with 37 nonzeros and its 4-way fine-grain partitioning is
given in Fig. 1(a). In the figure, the partitioning is given by the processor num-
bers for each nonzero. The computational load balance is achieved by assigning
9, 10, 9, and 9 nonzeros to processors in order.
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Fig. 1. (a) A 10 × 10 matrix and a 4-way partitioning, (b) communication matrix Cx,
and (c) communication matrix Cy
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3 Minimizing the Communication Cost

Given a K-way fine-grain partitioning of a matrix, we identify two sets of rows
and columns; internal and coupling. The internal rows or columns have nonzeros
only in one part. The coupling rows or columns have nonzeros in more than one
part. The set of x-vector entries that are associated with the coupling columns,
referred to here as xC , necessitate communication. Similarly, the set of y-vector
entries that are associated with the coupling rows, referred to here as yC , ne-
cessitate communication. Note that when symmetric partitioning requirement
arises we add to xC those x-vector entries whose corresponding entries are in yC

and vice versa. The proposed approach considers partitioning of these xC and
yC vector entries to reduce the total message count and the maximum commu-
nication volume per processor. The other vector entries are needed by only one
processor and should be assigned to the respective processors to avoid redundant
communication. The approach may increase the total volume of communication
of the given partitioning by at most max{|xC |, |yC |}. We propose constructing
two matrices Cx and Cy, referred to here as communication matrices, that sum-
marize the communication on x- and y-vector entries, respectively. Matrix Cx

has K rows and |xC | columns. For each row k we insert a nonzero in column j
if processor Pk has nonzeros in column corresponding to xC [j] in the fine-grain
partitioning. Hence, the rows of Cx correspond to processors in such a way that
the nonzeros in the row k identify the subset of xC-vector entries that are needed
by processor Pk. Matrix Cy is constructed similarly. This time we put processors
in columns and yC entries in rows. Figure 1(b) and (c) show communication
matrices Cx and Cy for the sample matrix given in (a).

3.1 Unsymmetric Partitioning Model

We use row-net and column-net hypergraph models for representing Cx and
Cy, respectively. In the row-net hypergraph model, matrix Cx is represented
as hypergraph Hx for columnwise partitioning. The vertex and net sets of Hx

correspond to the columns and rows of matrix Cx, respectively. There exist one
vertex vj and one net ni for each column j and row i, respectively. Net ni contains
the vertices corresponding to the columns which have a nonzero in row i. That is,
vj ∈ ni if Cx[i, j] �= 0. In the column-net hypergraph model Hy of Cy, the vertex
and net sets correspond to the rows and columns of the matrix Cy, respectively,
with similar construction. Figure 2(a) and (b) show communication hypergraphs
Hx and Hy.

A K-way partition on the vertices of Hx induces a processor assignment
for the expand operations. Similarly, a K-way partition on the vertices of Hy

induces a processor assignment for the fold operations. In unsymmetric par-
titioning case, these two assignment can be found independently. In [17] we
showed how to obtain such independent partitionings in order to minimize the
four communication-cost metrics. The results of that work are immediately ap-
plicable to this case.
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Fig. 2. Communication hypergraphs: (a) Hx, (b) Hy, and (c) a portion of H

3.2 Symmetric Partitioning Model

When we require symmetric partitioning on vectors x and y, the partitionings
on Hx and Hy can not be obtained independently. Therefore, we combine hyper-
graphs Hx and Hy into a single hypergraph H as follows. For each part Pk, we
create two nets xk and yk. For each xC [i] and yC [i] pair, we create a single vertex
vi. For each net xk, we insert vi into its vertex list if processor Pk needs xC [i].
For each yk, we insert vj into its vertex list if processor Pk contributes to yC [j].
We show vertices v4 and v7 of H in Fig. 2(c). Since communication occurs in two
distinct phases, vertices have two weights associated with them. The first weight
of a vertex vi is the communication volume requirement incurred by xC [i]; hence
we associate weight di −1 with the vertex vi. The second weight of a vertex vi is
the communication volume requirement incurred by yC [i]; as in [17] we associate
a unit weight of 1 with each vi.

In a K-way partition of H, an xk-type net connecting λxk parts necessitates
λxk − 1 messages to be sent to processor Pk during the expand phase. The
sum of these values thus represents the total number of messages sent during
the expand phase. Similarly, a yk-type net connecting λyk parts necessitates
λyk −1 messages to be sent by Pk during the fold phase. The sum of these values
represents the total number of messages sent during the fold phase. The sum
of the connectivity − 1 values for all nets thus represents the total number of
messages. Therefore, by minimizing the objective function in Eq. 1, partitioning
H minimizes the total number of messages. The vertices in part Vk represent the
x-vector entries to be expanded and the respective y-vector entries to be folded
by processor Pk. The load of the expand operations are exactly represented by
the first components of the vertex weights if for each vi ∈ Vk we have vi ∈
xk. If, however, vi /∈ xk, the weight of a vertex for the expand phase will be
one less than the required. We hope these shortages to occur, in some extent,
for every processor to cancel the diverse effects on the communication-volume
load balance. The weighting scheme for the fold operations is adopted with the
rationale that every yC [i] assigned to a processor Pk will relieve Pk from sending
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a unit-volume message. If the net sizes are close to each other then this scheme
will prove to be a reasonable one. As a result, balancing part sizes for the two
set of weights, e.g., satisfying Eq. 2, will relate to balancing the communication-
volume loads of processors in the expand and the fold phases, separately. For the
minimization of the maximum number of messages per processor metric we do
not spend explicit effort. We merely rely on its loose correlation with the total
number of messages metric.

In the above discussion, each net is associated with a certain part and hence
a processor. This association is not defined in the standard hypergraph parti-
tioning problem. We can enforce this association by adding K special vertices,
one for each processor Pk, and inserting those vertices to the nets xk and yk.
Fixing those special vertices to the respective parts and using partitioning with
fixed vertices feature of hypergraph partitioning tools [1,5] we can obtain the
specified partitioning on H. However, existing tools do not handle fixed ver-
tices within multi-constraint framework. Therefore, instead of obtaining balance
on the communication-volume loads of processors in the expand and the fold
phases separately, we add up the weights of vertices and try to obtain balance
on aggregate communication-volume loads of processors.

4 Experiments

We have conducted experiments on the matrices given in Table 1. In the table,
N and NNZ show, respectively, the dimension of the matrix and the number of
nonzeros. The Srl.Time column lists the timings for serial SpMxV operations in
milliseconds. We used PaToH [5] library to obtain 24-way fine-grain partition-
ings on the test matrices. In all partitioning instances, the computational-load
imbalance were below 7 percent. Part.Mthd give the partitioning method ap-
plied: PTH refers to the fine-grain partitioning of Çatalyürek and Aykanat [6],
CHy refers to partitioning the communication hypergraphs with fixed vertices
and aggregate vertex weights. For these two methods, we give timings under
column Part.Time, in seconds. For each partitioning method, we dissect the
communication requirements into the expand and fold phases. For each phase,
we give the total communication volume, the maximum communication volume
handled by a single processor, the total number of messages, and the maximum
number of messages per processor under columns tV, xV, tM, and xM, respectively.
In order to see whether the improvements achieved by method CHy in the given
performance metrics hold in practice, we also give timings, the best among 20
runs, for parallel SpMxV operations, in milliseconds, under column Prll.Time.
All timings are obtained on machines equipped with 400 MHz Intel Pentium II
processor and 64 MB RAM running Linux kernel 2.4.14 and Debian GNU/Linux
3.0 distribution. The parallel SpMxV routines are implemented using LAM/MPI
6.5.6 [2]. To compare our method against PTH, we opted for obtaining symmet-
ric partitioning. For each matrix, we run PTH 20 times starting from different
random seeds and selected the partition which gives the minimum in total com-
munication volume metric. Then, we constructed the communication hypergraph
with respect to PTH’s best partitioning and run CHy 20 times, again starting from
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different random seeds, and selected the partition which gives the minimum in
total number of messages metric. Timings for these partitioning methods are for
a single run. In all cases, running CHy adds at most half of the time required by
PTH to the framework of fine-grain partitioning.

In all of the partitioning instances, CHy reduces the total number of messages
to somewhere between 0.47 (fom12) and 0.74 (CO9) of PTH. In all partitioning
instances, CHy increases the total communication volume to somewhere between
1.32 (creb) and 1.86 (pds20) of PTH. This is expected, because a vertex vi may
be assigned to a part Vk while Pk does not need any of xC [i] or yC [i]. However,
reductions in parallel running times are seen for all matrices except lpl1. The
highest speed-up achieved by PTH and CHy is 5.96 and 6.38, respectively, on fxm3.

Table 1. Communication patterns and running times for 24-way parallel SpMxV

Matrix Size Part. Expand Phase Fold Phase Prll. Srl.
N NNZ Mthd Time tV xV tM xM tV xV tM xM Time Time

CO9 10789 249205 PTH 11.43 2477 524 290 21 4889 473 358 22 4.55 12.54
CHy 0.66 5121 318 223 22 7367 714 259 18 4.05

creb 9648 398806 PTH 26.71 9344 750 490 23 12660 871 504 23 6.64 19.30
CHy 2.51 13047 715 313 23 16157 1068 341 20 5.92

ex3s1 17443 679857 PTH 48.88 7964 602 312 22 26434 1762 356 20 8.39 33.52
CHy 13.58 19537 1128 195 23 36347 2252 270 16 7.91

fom12 24284 329068 PTH 22.07 7409 559 228 23 21208 1143 228 13 5.03 19.86
CHy 13.76 16713 983 96 10 28151 1541 119 8 4.03

fxm3 41340 765526 PTH 37.73 1843 279 212 23 2662 282 236 17 6.39 38.13
CHy 0.29 3299 215 142 16 4027 456 156 15 5.97

lpl1 39951 541217 PTH 27.04 7646 1062 226 20 13752 961 253 17 5.73 29.81
CHy 5.09 15079 892 166 22 20582 1507 186 12 5.83

mod2 34774 604910 PTH 32.83 5015 845 267 23 9421 1135 278 22 6.92 30.81
CHy 2.18 10523 656 181 23 14142 1517 198 17 5.92

pds20 33874 320196 PTH 18.65 5373 557 299 23 13548 956 317 19 5.23 17.82
CHy 6.09 14066 794 177 18 21302 1436 201 13 4.95

pltex 26894 269736 PTH 14.29 1883 172 167 16 7065 508 273 20 4.27 14.64
CHy 1.11 4533 311 89 16 8828 782 139 10 3.63

world 34506 582064 PTH 30.84 4934 794 300 23 9710 1295 316 23 7.35 29.63
CHy 2.50 10679 656 181 23 14854 1745 205 18 6.05

5 Conclusion and Future Work

We showed a two-phase approach that encapsulates various communication-cost
metrics in 2D partitioning of sparse matrices. We developed models to obtain
symmetric and unsymmetric partitioning on input and output vectors. We tested
performance of the proposed models on practical implementations. In this work,
a sophisticated hypergraph partitioning tool that can handle fixed vertices in
the context of multi-constraint partitioning was needed. Since the existing tools
do not handle this type of partitioning, we are considering to develop such a
method.
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