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Introduction

Sparse matrices

A sparse matrix is a matrix with a lot of zero entries.

More importantly: all or some zeros are not stored.
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Sparse matrices are abound in scientific computing: » large scale
optimization, » chemical process simulation, » computational fluid
dynamics, » numerical solution of partial differential equations, » web

0.0
2.2
0.0
0.0
5.2

0.0
0.0
3.3
0.0
0.0

0.0
2.4
0.0
4.4
5.4

0.0
0.0
0.0
0.0
55

information retrieval (e.g., Google's page rank),. ..
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Sparse matrices: Coordinate format

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.

Coordinate (Triplet) format

1.1 0.0 0.0 0.0 0.0
00 22 0.0 24 0.0
31 00 33 0.0 0.0
0.0 0.0 00 44 0.0 irn=[ 1 2 2 3 3 4 5 5 5]
0.0 52 0.0 54 55

Two integer arrays (irn, jcn) and a
double array A:

jen=1[ 1 2 4 1 3 4 2 4 5]

A

[1.12.22.43.13.34.45.25.45.51]

The kth entry aj; is stored as irn[k] =/, jen[k] =j, alk] = aj .

Let 7 denote the number of nonzeros, then the storage is 27 integer and
7 double (or single or complex). In general, 7 = O(m + n).
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Sparse matrices: Compressed row storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.

Compressed row storage
1.1 0.0 00 0.0 0.0
0.0 22 0.0 24 0.0
31 0.0 33 0.0 0.0
0.0 00 0.0 44 0.0 ia =[ 1 2 4 6 7 10 ]
0.0 52 00 54 55

Two integer arrays (ia, jcn) and a
double array A:

jenm=[1 2 4 1 3 4 2 4 5]

=
n

[1.1 2.2 2.43.13.34.45.25.45.5]1]

The nonzeros of the ith row are stored at the
ia[i]... ia[i+1]-1 positions of jcn and A .

For example the 3rd row: starts at ia[3] = 4 and finishes at
ia[3+1]-1=5 . The column indices are therefore jcn[4,5]= 1 3 and

values are A[4,5]=3.1 3.3.



Introduction

Sparse matrices: Compressed row storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the

nonzero entries.
Compressed row format

Two integer arrays (ia, jen) and a
double array A:

1.1 00 00 0.0 0.0
0.0 22 0.0 24 0.0
31 0.0 33 00 0.0

0.0 0.0 0.0 44 0.0 ia =[ 1 2 4 6 7 10 ]
0.0 52 00 54 55 jen=[ 1 2 a4 1 3 a 2 4 51
A =[1.1 2.2 2.4 3.13.34.45.25.45.5] )

The nonzeros of the ith row are stored at the ia[i]... ia[i+1]-1

positions of jcn and A .

Let matrix be of size m x n, and 7 be the number of nonzeros, then the
storage is m 4+ 1 + 7 integer and 7 double (or single or complex).
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Sparse matrices: Compressed column storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.

Compressed column storage
1.1 0.0 0.0 0.0 0.0
0.0 22 0.0 24 0.0
31 0.0 33 0.0 00
0.0 00 0.0 44 0.0 ja =1[ 1 3 5 6 9 101
0.0 52 0.0 54 55

Two integer arrays (irn, ja)and a
double array A:

irm=[ 1 3 2 5 3 2 4 5 5]

A =1[1.13.12.25.23.32.44.45.45.51

The nonzeros of the jth column are stored at the jal[jl... ja[j+1]1-1
positions of irn and A .

For example the 2nd col: starts at jal[2] =3 and finishes at
jal[2+1]1-1=4 . The row indices are therefore irn[3,4]= 2 5 and

values are A[3,4]=2.2 5.2 .



Introduction

Sparse matrices: Compressed column storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the

nonzero entries.
Compressed column format

Two integer arrays (irn, ja)and a
double array A:

1.1 00 00 0.0 0.0
0.0 22 0.0 24 00
31 0.0 33 0.0 0.0

0.0 0.0 0.0 44 0.0 ja =1[ 1 3 5 6 9 101
0.0 52 0.0 54 55 il 5 2 5 3 3 4 & 51
A =10[1.13.12.25.23.32.44.45.45.5]

The nonzeros of the jth column are stored at the
jaljl... ja[j+1]1-1 positions of irn and A .

Let matrix be of size m x n, and 7 be the number of nonzeros, then the
storage is n+ 1 + 7 integer and 7 double (or single or complex).
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Reminder: Dense matrix vector multiplication

Need to compute y <— Ax for an m x n dense® matrix A and suitable
dense vectors y and x.

Column-major order

Row major order

for i=1to m do
y[i] < 0.0

for j =1 to ndo
for i=1to m do

yli] = ylil + Al ]+ x[]

for i =1 to m do
y[i] < 0.0
for j =1 to ndo
y[i] = ylil + Ali, j] = x[J]
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Sparse matrices: Sparse matrix vector multiplies

Need to compute y < Ax for an m X n sparse matrix A and suitable
dense vectors y and x.

Coordinate format with 7 nonzeros (irn, jcn, A)

for i=1to m do
y[i] < 0.0
for k=1to 7 do
ylirn[K]] <= y[irn[k]] + A[K] * x[jcn[K]]
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Sparse matrices: Sparse matrix vector multiplies

Need to compute y < Ax for an m x n sparse matrix A and suitable
dense vectors y and x.

Compressed row storage Compressed column storage

(ia, jon, A) (ja, irn, A)
for i =1 to m do fori':1tomdo
val + 0.0 i
0 o for j =1 to n do
for k = H =
or ia[i] to ia[i + 1] do xval < x[j]

val < val + A[k] % x[jen[k]]

] < vl for k = ja[j] to ja[j + 1] — 1 do

ylirn[Kk]] <= ylirn[K]] + A[K] * xval

@ Characterizes a wide range of applications with irregular computational
dependency.
o reduction operation from inputs (here entries of x) to outputs (here
entries of y)
@ A fine grain computation: each nnz is read/operated on once.
Guaranteeing efficiency will guarantee efficiency in applications with a
coarser grain computation.
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Sparse matrices: Sparse matrix vector multiplies

SpMxV's of the form y <— Ax are the computational kernel of many
scientific computations

@ Solvers for linear systems, linear programs, eigensystems, least
squares problems,

@ Repeated SpMxV with the same large sparse matrix A,

@ The matrix A can be symmetric, unsymmetric, rectangular,

@ Sometimes multiplies are of the form y < ADA z with a diagonal
D (in interior point methods for linear programs).
o computation proceeds (why?) as w <— A7z, then x « Dw, then
y + Ax

@ Sometimes we have multiplies with A and AT independent; y < Ax
and w < ATz (QMR, CGNE, and CGNR methods with square
unsymmetric A; rectangular A in Lanczos method).

@ Most of the time the SpMxV's are of the form y +~ AM~1x (called
preconditioning).

12 Parallel sparse matrix vector multiplications



Introduction

Iterative solvers: How do they look?

The Conjugate Gradint method

. Compute rg := b — Azg,po :=7o.
while not converged do Forj = 0,1, ..., until convergence

computations aj = (rj,r;)/(Ap;, ;)

check convergence Tii1 =2, + a;p;

J ] I
Tj+1 :=T5 — ajApj
_ ) Bj = (i1, m541)/ (rj; 75)
@ Linear vector operations Djt1 = Tjy1 + Bp;
X+~ x+ay > Xj = X;+ay; EndDo

Computations are of the form:

@ Inner products
OZ(—(X,y) >O[:ZXI'yi
@ Sparse matrix vector multiplies

With certain types of
preconditioners, we have SpMxV
with another matrix M and/or

— Ax :
i(_ AT MT. Replace Ap; with AMp;.
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Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

What are the aims of a distribution?
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Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

@ nonzeros in A are distributed,
@ the input vector entries, x;s, are distributed,

@ the ouput vector entries, y;s, are distributed (that is, the
responsibility of storing them is decided).

What are the aims of a distribution?
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Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.
@ nonzeros in A are distributed,
@ the input vector entries, x;s, are distributed,

@ the ouput vector entries, y;s, are distributed (that is, the
responsibility of storing them is decided).

What are the aims of a distribution?
@ load balance among processors: equal number of a;; per processor,
@ reduced communication requirement:
® 3 is to be multiplied by X;; these two should meet at a processors;

e the scalar product a;x; is a contribution to yj; the result of the
product ajix; and the vector entry y; should meet at a processor.

17 Parallel sparse matrix vector multiplications
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Parallelization objectives

Achieve load balance
Load of a processor: number of nonzeros.
= assign almost equal number of nonzeros per processor.

Minimize communication cost

Communication cost is a complex function (depends on the machine
architecture and problem size):

@ total volume of messages,
@ total number of messages,
@ max. volume of messages per processor (sends or receives, both?),

@ max. number of messages per processor (sends or receives, both?).

Parallel sparse matrix vector multiplications
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Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

What are the aims of a distribution?
@ load balance among processors: equal number of aj; per processor,

@ reduced communication requirement: aj; is to be multiplied by x;;
these two should meet at a processors; the scalar product ajix; is a
contribution to y;; the result ajx; and y; should meet at a processor.

Assume there are no operations between x and y of the SpMxV y < Ax
after the multiply operation.

In half of the cases(!), the input vector x and the output vector y undergo
vector operations (such as x < x + By, or 7 < xTy), in such cases it is
better to have the same partition on x and y —we will come to this later.

19 Parallel sparse matrix vector multiplications
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Column
Row-column p.

Parallel sparse matrix vector multiplies: Variants

We classify parallel SpMxV algorithms into three groups (according to
the distribution on the matrix)

@ Row-parallel algorithm: all nonzeros in a row of the matrix is
assigned to the same processor (aj; and ajc are in the same
processor),

@ Column-parallel algorithm: all nonzeros in a column of the matrix is
assigned to the same processor (a;; and aj; are in the same
processor).

@ Row-column parallel algorithm: many possibilities

o each nonzero is assigned to a processor on its own (a; and aj can be
in different processors; aj and ai; can be in different processors),

o the nonzeros in a row and/or column are assigned to a small set of
processors (e.g., assume a 2D mesh of processors and distribute the
nonzeros in a row of A among the processors of a row of the mesh).

20 Parallel sparse matrix vector multiplications
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Parallel SpMxV
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© Parallel SpMxV
@ Row parallel
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Parallel SpMxV: Row-parallel

The rows and columns of an m x n matrix A are permuted into a K x K
block structure

A A - Ak

Ay Axn - A
AsL = : - :

Axi Ak -+ Axk

for rowwise partitioning, where K is the number of processors.
@ Block Ay is of size my x ng, where >~ my =mand ), n; = n.
@ Processor Py holds the kth row stripe [Agy - - - Akx] of size my x n.

@ Load balance: The row stripes should have nearly equal number of
nonzeros for having the computational load balance among
processors.

22 Parallel sparse matrix vector multiplications
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Parallel SpMxV: Row-parallel

In y < Ax, y and x are column vectors of size m and n; A is partitioned
as shown in the previous slide.

@ A rowwise partition of matrix A defines a partition on the output
vector y.

@ The input vector x is assumed to be partitioned conformably with
the column permutation of matrix A.

@ y and x vectors are partitioned as y = [y{ ---y[]T and
x = [x{ ---xk]T, where y\ and x are column vectors of size my
and ny, respectively.

@ processor Py holds x,x and is responsible for computing y.

23 Parallel sparse matrix vector multiplications
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Parallel SpMxV

Parallel SpMxV: Row-parallel

Matrix is partitioned rowwise among 4 processors.

P] PZ P3 P4
\ X : * : X3 : % ] @ row stripes are assigned
CANMTNONa 2ENN IR R RN INNKS to processors
[] Ixx xx X | | X :
2 X X X X X X X . .
Pl Shexxx x : : X : @ virtual column stripes
4[X X X X X X .
5 X xxx x| <T shows the assignment of
X X X X X X X X .
Py,| 8 x :X X X: X: X vector entries.
8| XX XX X !
9 | XXX @ The columns of the
Py, 19 X XXX x xx X X .
317301 | b oxo x matrix are permuted
12 | X Ixx  xxx| .
13 | X X X XXX according to the
14 X X X X X X X o)
P4y4 15 x: X : :><><><><><>< partition on Xx.
) XX XX

25 nonzeros in the 1st row stripe (assigned to processor P1)
26 nonzeros in the 2nd row stripe (assigned to processor P»)
25 nonzeros in the 3rd row stripe (assigned to processor P3)
25 nonzeros in the 4th row stripe (assigned to processor Pj)
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Parallel SpMxV: Row-parallel algorithm

Executes the following steps at each processor Py:

@ For each nonzero off-diagonal block A, send sparse vector Qf; to
processor Py, where )?i contains only those entries of xj
corresponding to the nonzero columns in Ayy.

@ Compute the diagonal block product y’,j — Ak X xg, and set
Yk = )/’Z-

© For each nonzero off-diagonal block Ay, receive )?Z from processor
Py, then compute y§ < Ay, x X5, and update yj + yi + v&.

In Step 1, P, might be sending the same x,-vector entry to different
processors according to the sparsity pattern of the respective column of
A. This multicast-like operation is called the expand operation.

25 Parallel sparse matrix vector multiplications
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Parallel SpMxV

imn parallel

Parallel SpMxV: Row-parallel

Matrix is partitioned rowwise among 4 processors. y vector entries are
partitioned according to the rowwise partition of A; assume the x vector
entries are partitioned and the columns of A are permuted.

P P P P

1 2 3 4
\ X ! ) ! X3 ! X4 ‘
Py X ix % i ol x (sends/receives)
4)X X x x x| | x | .
5 x5 x| Xl X 2. Compute with
P _VZ 6| X |><>(>< ><><>(| | .
2| 7 XX x| Xxx) x| diagonal blocks
8 X X X X y |
9 XIX X X X X .
Py, 10 [ x| xlxoxoxoxd xx| | 3. Receive x and
3173 11 | Ix x X X .
12 | X XX xxx] compute with off-
13 | X | |X X X X X d' Ibl k
Py, 1k §: N : % :§§§§X§ lagonal blocks
L |16 L | XX XX

26 Parallel sparse matrix vector multiplications



Row parallel
Column parallel

Parallel SpMxV

lumn parallel

Row-parallel SpMxV: Communication requirements

P, P, Py P,
\ v | n o T o]
H ocdndmynonwaQNNNRY
o Eane x:” 232 : == : S 1. Expandxveptor
Py 3 X575 I o * (sends/receives)
4[X X X x x| | x | .
s X X[ T X 2. Compute with
P ¥, 6| XX X X X X[X X] ] .
22| 7 X x| xpxx) x| diagonal blocks
8| X X X X 1 Il
9 H XX X X X X| o
P |1 : x X:xixxixi xx| (34 Receive x and
A I X _Ixx_ xxxl compute with off-
13| | X | |>< X X X X d, |b| ks
o 2|4 1 % K3xs.x| | diagonalbloc
L |16 X X X X

Fact 1: Number of messages sent by Py

The number of messages sent by processor Py is equal to the number of
nonzero off-diagonal blocks in the kth virtual column stripe of A.

@ P, sends x[12:14] to P3—nonzero columns 12,13, and 14 in As,.
@ P> sends x[12] to Ps—nonzero column 12 in Ag,.

@ The number of messages sent by P is 2.
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Parallel SpMxV

lumn parallel

Row-parallel SpMxV: Communication requirements

P, P, Py P,
‘ X ! ) ! X3 ! X4 ‘
o N P N N TR
o Eane x:” 232 : == : S 1. Expandxveptor
Py 3 X575 I o * (sends/receives)
4[X X X x x| | x | .
s X X[ T X 2. Compute with
P ¥, 6| XX X X X X[X X] ] .
22| 7 X x| xpxx) x| diagonal blocks
8| X XX X I I
9 H XX X X X X| o
P Jy;| 10 ! x| xl xxxxxl xx| |3. Receive x and
A I X _Ixx_ xxxl compute with off-
13| I X | |>< X X X X d, |b| ks
pplid 1 x kx| diagonal bloc
L |16 X X X X

Fact 2: Volume of messages sent by Py

The volume of messages sent by Py is equal to the sum of the number of
nonzero columns in each off-diagonal block in the kth virtual column stripe of
A.

@ P, sends x[12:14] to P3—(size 3).
@ P, sends x[12] to Ps;—(size 1).
@ The volume of messages sent by P, is 4.
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Parallel SpMxV

P, P, P, P,
‘ 6 R
H ocdndmynonwaQNNNRY
Ol R AR ST Expandxveptor
Py 3 X575 I o * (sends/receives)
4]x x x x x| | x | .
5 B o] I X 2. Compute with
P ¥, 6| XX X X X X[X X] | .
2727 X P x| XIxx| x| diagonal blocks
8| X X X X 1 Il
9 H XX X X X X| .
P 5|1 ! x| xl xxxxxl xx| |3. Receive x and
A I X _Ixx_ xxxl compute with off-
13| | X | IX X XXX d |b| ks
Pl I T S iagonal bloc
L1186 X X XX

Fact 3: Total volume and number of messages

@ The total volume of messages is equal to the number of nonzero columns
in off-diagonal blocks.

@ The total number of messages is equal to the number of nonzero
off-diagonal blocks.

@ Total volume of messages is 13. @ Total number of messages is 9.
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@ Column parallel

30
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imn parallel

Parallel SpMxV: Column-parallel

The rows and columns of an m x n matrix A are permuted into a K x K
block structure

A A - Ak
Ay Axn - Ax
Axi Axo -+ Axk

for columnwise partitioning, where K is the number of processors.
@ Block Ay is of size my x ng, where >~ my =mand ), n; = n.

@ Processor Py holds the kth column stripe [A], --- Aki]T of size
m X Ng.

@ Load balance: The column stripes should have nearly equal number
of nonzeros for having the computational load balance among
processors.
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imn parallel

Parallel SpMxV: Column-parallel

In y < Ax, y and x are column vectors of size m and n; A is partitioned
as shown in the previous slide.

@ A columnwise partition of matrix A defines a partition on the
input-vector x.

@ The output vector y is assumed to be partitioned conformably with
the row permutation of matrix A.

@ y and x vectors are partitioned as y = [y{ ---y[]T and
x = [x{ ---xk]T, where y\ and x are column vectors of size my
and ny, respectively.

@ processor Py holds x,x and is responsible for computing y.

o
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Parallel SpMxV: Column-parallel

Matrix is partitioned columns among 4 processors.
P P P P

1 2 3 4
‘ X ) X3 x4 ‘
. norola2z NOF0e @ column stripes are assigned to
2[x X x % processors.
3 X X X
v 4|X X X . .
s fx x x Pr e virtual row stripes shows the
6 X X X X X X . .
Ll od | xx] assignment of y vector entries.
8 X X X X
9 .
10 i xx @ The rows of the matrix are permuted
Yol 11 X X X . .
|12 x| x ko ox | P2 according to the partition on y.
13 X X X
R S @ Load balance achieved:
16 X X X . .
il 17 o P, 25 nonzeros assigned to processor Pq;
| xxx XXX x| x 26 nonzeros assigned to processor P»;
20 X X XX X .
CTET T T T T T T T Ry 25 nonzeros assigned to processor Ps;
22 X X X .
b xxx | p 25 nonzeros assigned to processor Pai.
Y4 24 X X X X 4
25 X X X X X
26 X X X X X X
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Parallel SpMxV

Parallel SpMxV: Column-parallel algorithm

Executes the following steps at each processor Py:

© For each nonzero off-diagonal block Ay, form sparse vector f/éf
which contains only those results of yjf = Ay X xi corresponding to
the nonzero rows in Ay. Send f/if to processor Py.

@ Compute the diagonal block product y’,j < Ay X xg, and set

k

Yk = Yk-

© For each nonzero off-diagonal block Ay, receive partial-result vector
f/i from processor Py, and update yy < yx +9£.

In Step 3, the multinode accumulation on the y-vector entries is called
the fold operation.

34 Parallel sparse matrix vector multiplications
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imn parallel

Parallel SpMxV: Column-parallel

Matrix is partitioned columnwise among 4 processors. x vector entries are
partitioned according to the columnwise partition of A; assume the y vector

entries are partitioned and the rows of A are permuted.
PP P, P

‘ 1 2 4 ‘
Xy XZ Xj “
—  CNosmeree2o3R3A2 1. Compute with off diagonal
1 (X X X
E{ooge blocks; obtain partial y
) 4|X X X .
SN P results, issue
A N (P M sends/receives
9 X X
10 X X X . .
s e, 2. Compute with diagonal
5 XX X block
__-E____ Y_X_X-____ . .
i L » |3 Receive partial results on y
Y .
1 R | IV for nonzero off-diagonal
—--g—ﬁ:———- it el S blocks and add the partial
X X X
S xxx | P, results
25 X X X X X
L ]26[XX X X X X

35 Parallel sparse matrix vector multiplications
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Parallel SpMxV

Column-parallel SpMxV: Communication
requirements

3 Raex Fact 1: Number of messages sent by Px
3 XX
Ti| AR y P, The number of messages sent by processor
6 X X X X X X H H
Ll ohe S > L xx ] P in column-parallel y < Ax is equal to
5 aoRal the number of nonzero off-diagonal blocks
|2 ol p. in the kth column stripe of A.
112 X X X X X X | 2
13 ‘
27 S 93 VR P VS
H ® % xox @ Ps sends a message to P for y vector
3| 18 S Py entries y[12,13,14] and to P4 for
19 X X X X X X X X
Ld2ol ke x o x| — y[25, 26].
21 X X X X
22
NE: xxx | p @ P, sends messages to P1 P, and Ps.
4| 24 X 3¢ XX 4
25 XX X xx‘
26 [X X X X X X
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Parallel SpMxV

Column-parallel SpMxV: Communication
requirements

3 Raex Fact 2: Volume of messages sent by Py

3 X X
Ti| AR y P, The volume of messages sent by P is

Gl ARG S o5z equal to the sum of the number of nonzero
IRER - P SR ¢ O . : )

3 ol rows in each off-diagonal block in the kth
| ofols p. column stripe of A.

12 X x x x x x| ‘2

13 ‘
il hencre e L]

H B s S @ Pj3 sends a message to P; for y vector
| 13 S Py entries y[12,13,14] and another one

19 X X X X X X X X
Ll20] __xox_|xx x| ___| to P4 for y[25,26]

21 X X X X

22 .

% xxx | p @ P3 sends 5 units of messages.
Ya| 22 56 % e 4

25 XX X xx‘

26 [X X X X X X
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umn parallel

Column-parallel SpMxV: Communication

requirements

I 1. Compute with off diagonal
S blocks; obtain partial y
| dboxx X
K oo X Py results, issue
6| xxx| xxx )
(R S P - sends/receives
9 X X
yolos oiclal |~ 2. Compute with diagonal
5 B e s block
Ll o exx_xx 1]
15 X XX . .

e Bl » | 3. Receive partial results ony
RB{ - Sl « } for nonzero off-diagonal
1 g—%z’----——x-ix--x;-x;; blocks and add the partial
E xxx | p, results

24 X X X X
25 XX X X X
26 X X X X X X

Fact 3: Total volume and number of messages

@ The total volume of messages is equal to the number of nonzero rows in
off-diagonal blocks. (13)

@ The total number of messages is equal to the number of nonzero

off-diagonal blocks. (9)
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Column parallel
lumn p.

Parallel SpMxV

Parallel SpMxV: Row parallel and column parallel

algorithms

11X XX 1 2 3 4
2|X X X X
3| xxx ‘ X1 ! *2 ! X3 ! *4 ‘
1
Vi giix « P, - ‘—qummv\mmﬁ?ii‘ﬂ3|“2.‘9'2?392|§ﬁ9§28
X X XX X I3
?xxxi XXX « X Ply| 2| xxxxx : : X : X
i e Y e 177 3 x x x X X
9 X x 4% x x x x| | x |
10 X X X 5 Ix  xxx xI xT
Yol 11 X X X | 6 XXX X X XX X]| 1
12 X X X X X X P2 PZ}Z 7| X XX XX X)| X1
13 X X X 8 XX XX X 1 1
Ll xx_ XX L 9 XX X X X X
> X XX P 10 | x xIxxxxx! X X
16 XXX 3173011 | Ix x x | x
3| 7 xx P, 12 | X Ixx  xxx]|
lg X X X iixi x ‘ 3 [ X [ X XX XX
14 X XX XX X
F20L DX o XL Py, | |
21 XXX X 4 15 | X | PEX XXX X
22 X X X 16 X X XX
23 X X X
Y4l 22 X X X X P4
25 XX X XX
L | 26lxx x X X %

The communication patterns of column parallel y < AT x and row parallel
y  Ax are duals of each other (the columnwise partition on AT is equal to
the rowwise partition on A).

39 Parallel sparse matrix vector multiplications



Parallel SpMxV

Row-column parallel

Outline

© Parallel SpMxV

@ Row-column parallel
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column parallel

Parallel SpMxV: Row-column parallel algorithm

Consider y < Ax, where y and x are column vectors of size m and n,
respectively, and the matrix is partitioned in two dimensions among K
processors.
@ The vectors y and x are partitioned as y = [y{ -- ~y;]T and
x = [x{ -+ xk]T, where y, and x are column vectors of size my
and ny, respectively. As before we have Y, my = mand >, ny = n.
@ Processor Py holds x, and is responsible for computing y.
@ Nonzeros of a processor Py can be visualized as a sparse matrix A*

A’1<1 Afk AlfK

; : . : " :
AX = A£1 Aik AiK
Al;ﬂ A’Rk Afm

of size m x n, where A = 5" A¥ (here AXs are disjoint).
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@l pn allel
ow-column parallel

Parallel SpMxV: Row-column parallel algorithm

P\ has A¥, holds x, and is responsible for y.

Ak . Ak L Ak ° The blocks in row-block stripe
" . " [Ak17 o Akk’ e 7AII§K] have
: . : . : row dlmen5|on of size my.
K
A= | A o AN o AR

° The blocks in column-block stripe
K k
. . . . : *k - [A1k7"' 7Akk7"' 7AKk] have
K K k column dimension of size ny.
A Ak Akk k

@ The x-vector entries that are to be used by processor Py are represented
as x¥ = [x§,- -+, xK,- -+, xk], where x§ corresponds to x and other x&

are belonging to some other processor Py.

@ The y-vector entries for which processor P, computes partial results are
represented as yX = [y'l‘7 eyl ,y'f(], where y¥ corresponds to yj and
other y% are to be sent to some other processor Py.

42 Parallel sparse matrix vector multiplications



Parallel SpMxV -

allel
column parallel

Parallel SpMxV: Row-column parallel algorithm

Executes the following steps at each processor Py:

© For each ¢ # k having nonzero column-block stripe A%, , send sparse
vector Qi to processor Py, where Qf; contains only those entries of
Xk corresponding to the nonzero columns in Aﬁk.

@ Compute the column-block stripe product y* < A:k X xt.

@ For each nonzero column-block stripe A¥,, receive X§ from processor
Py, then compute yk « y* "‘Aie X >A<IL§, and set yx = y’,j.

© For each nonzero row-block stripe Aif*, form sparse partial-result
vector §¢ which contains only those results of yk = Ak x xk
corresponding to the nonzero rows in AX_. Send §§ to processor P;.

@ For each ¢ # k having nonzero row-block stripe Af_ receive
partial-result vector yi from processor Py, and update yy < y« —l—j/fi.
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Parallel SpMxV: Row-column parallel algorithm

[P[P[P]P[P,[P.[P,[P,[P,[P)]
1234567890 1. Expand x vector
P4 1 4 4 4 4 o
D « «|||2. Scalar multiply and
oL L add
X 2 2 ‘
Pl | ?e‘nzd X5 (V<—aX+a,x,)
3| | |
P 7l ‘and X, «|| 13, Fold on y vector
Pupot—— N (send and receive
2 10 an 2V\—-\ MY 2|1 2 g
~ " [Send partial s partial results)

Load balance is achieved by assigning almost equal number of nonzeros
to the processors.
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Parallel SpMxV/ o "

R;o parallel

Row-column-parallel SpMxV: Communication
requirements

e Communication on x (expand operations)

Same as that in the row-parallel algorithm

e Communication on y (fold operations)

Same as that in the column-parallel algorithm
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Row-column parallel

Running time comparisons

from Vastenhouw and Bisseling'05

Table 5.8 Communication volume (in data words) and time (in ms) of parallel sparse matriz-
vector multiplication on an SGI Origin 3800. The lowest volume and time are marked
in boldface.

Name p Volume Time
1D row 1D col 2D 1D row 1D col 2D
tbdmatlab 1 0 0 0 5.74 5.71 5.77
2 5056 6438 5056 3.28 3.31 3.20
4 14650 14949 11005 2.08 2.06 1.95
8 30982 26804 17792 1.62 1.40 1.34
16 56923 42291 27735 1.34 1.19 1.17
32 98791 62410 40497 1.77 1.58 1.70
tbdlinux 1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 14.06 1222 12.14
8 90919 96038 49120 6.49 6.35 6.62
16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23
besstk30 1 0 0 0 50.99  50.96 56.18
2 948 948 940 28.37 28.24 26.04
4 2099 2099 2124 6.00 6.03 5.83
8 5019 5019 4120 2.87 2.90 2.88
16 9344 9344 8491 1.53 1.56 1.64
32 15593 15593 14771 1.08 1.12 1.17
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Outline

e Hypergraphs and hypergraph partitioning
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column-para
Hypergraphs and hypergraph partitioning c column-par
roblems

Parallelization objectives

Achieve load balance

Load of a processor: number of nonzeros.
= assign almost equal number of nonzeros per processor.

Minimize communication cost

Communication cost is a complex function (depends on the machine
architecture and problem size):

@ total volume of messages,
@ total number of messages,
@ max. volume of messages per processor (sends or receives, both?),

@ max. number of messages per processor (sends or receives, both?).

The common metric in different works: total volume of communication.
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Hypergraphs and hypergraph partitioning

Hypergraphs: Definitions

A hypergraph is two-tuple H = (V, ) where V is a set of vertices and
N is a set of hyperedges.

A hyperedge h € N is a subset of vertices. We call them nets for short.
A cost c(h) is associated with each net h.
A weight w(v) is associated with each vertex v.

An undirected graph can be seen as a hypergraph where each net
contains exactly two vertices.
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Hypergraphs and hypergraph partitioning

Hypergraphs: Example

H=(V,N)with V ={1,2,3,4,5} N = {ny, np, n3} where
m={1,3,4 n=1{1,2,3,4} n3={2,5}

Venn diagram-like Graph-like
representation representation
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Hypergraphs and hypergraph partitioning

Hypergraphs: Partitioning

M= {V1,Va...,Vk} is a K-way vertex partition if
o Vi #0,
@ parts are mutually exclusive: Vi NV, =0,

@ parts are collectively exhaustive: V = J V.

In T1, a net connects a part if it has at least one vertex in that part, i.e.,
h connects V. if hNVy # 0.

The connectivity A(h) of a net is equal to the number of parts connected
by h.

Objective: minimize cutsize(I1) Constraint: balanced part weights

>on c(h)(A(h) = 1), Zvevk w(v) < (1+ E)M
Hypergraph partitioning problem is NP-complete.

51 Parallel sparse matrix vector multiplications



H = (V,N) with 10 vertices and 4 nets, partitioned into four parts.
Vi = {4,5) Vo ={7,10} Vsi=1{3,8,9} V,={1,2,6}

v, g, 12 net | connectivity—1
Q 1 2—-1=1
4
o 2 3-1=2
3 3-1=2
4 2-1=1
9> Cutsize: 6
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Hypergraphs and hypergraph partitioning

partition

Hypergraphs: Partitioning tools and

Applications

hMETIS (Karypis and Kumar, Univ.
Minnesota),

MLPart (Caldwell, Kahng, and Markov,
UCLA/UMich),

Mondrian (Bisseling and Meesen,
Utrecht Univ.),

Parkway (Trifunovic and Knottenbelt,
Imperial Coll. London),

PaToH (Catalyiirek and Aykanat, Bilkent
Univ.),

Zoltan-PHG (Devine, Boman, Heaphy,
Bisseling, and Catalyiirek, Sandia National
Labs.).

VLSI: circuit partitioning,

Scientific computing:
matrix partitioning,
ordering, cryptology, etc.,

Parallel /distributed
computing: volume
rendering, data aggregation,
scheduling,
declustering/clustering,

Software engineering,
information retrieval,

processing spatial join
queries, etc.
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Hypergraphs and hypergraph partitioning

parallel computations

In all of the cases we will see, we will have unit net-costs, that is
c(h) = 1 The objective function becomes

> (A(h)~1)

h

Make the data to be partitioned as vertices of the hypergraph.

Assign weights to the vertices.

Put nets to represent dependencies of computations to the input
data; and dependencies of output data into computations.

(]

Partition into K parts, each Vi holds the data of a processor.

Load balance would be achieved if part weights are balanced.

Total volume of communication would be equivalent to the cut-size.
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Outline

e Hypergraphs and hypergraph partitioning
@ Hypergraph models for row-parallel SpMxV
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Hypergraph models for row-| parallel Sp

Hypergraphs and hypergraph partitioning

Hypergraph models for row- paraIIeI SprV

@ Three entities to partition y, rows of A, and x
three types of vertices y;, r;, and x;

@ Assign vertex weights
weight of r; is equal to the number of nnz in row /.

weight of y; and x; can be set to zero.

@ y; is computed by a single row, that is r;
represent the dependency of y; on r;

@ x; is a data source; r;is where aj; # 0 need x;
connect x; and all such r;
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Hypergraph models for row-parallel Spl
Hy hr lumn-paral
Hypergraphs and hypergraph partitioning a s olumn-par

ms

P, P, Py P,
‘ X ! Xy ! X3 ! *4 ‘
lwoCdNnINe N0 AT NG S
M e e e BRAE AR SRS S 1. Expandxve;tor
Pl 3 X575 I o * (sends/receives)
4|X X X x x| | x | .
s X X[ X 2. Compute with
Py,| 8 XX X X o X[X X | 8
2 7 XXX | XXX x| dlagonal blocks
8| X X X X 1 1
9 H XX X X X X| 0
Py 1? : X x:xixxix: ix 3. Receive x and
IR I X xx_ xxx]| compute with off-
o A oxxox di | blocks
, | 14 X X X X X X X
P4y4 15| ><: X : :><><><><><>< ELeIE
L |16 X X X X

Total volume and number of messages

The total volume of messages is equal to the number of nonzero columns in
off-diagonal blocks. Here, the total volume of messages is 13.
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Hypergraphs and hypergraph partitioning H
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Hypergraph models for row-parallel SpMxV

() ) (rX /}(])

/‘ 2 /\

m() N A n(rY

(v, { r (%) (i ( x
s el ) NG \D
(=) (%)
nky nry N/

Elementary hypergraph model | | Combine Y, and r:
for 1D rowwise partitioning owner computes rule

Partition the vertices into K parts
(partition the data among K processors)

Part weights=processor's loads in terms of nnz.
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o X x

1 3 X

! ! : X
10 , , X X
is : : P XX
Number of nonzeros columns
in off-diagonal blocks is 5.
Total volume is 5.

59

Column-net cy14 connects 2 parts; cs
connects 3 parts; c1» connects 2
parts; c13 connects 2 parts.

Cut-size is 5.
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10
15

There are 12 nnz in the first

row stripe. Each row-vertex gets a weight
equivalent to the number of
nonzeros in the associated row of A.

60 Parallel sparse matrix vector multiplications



Hypergraph models for row-par:
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Hypergraphs and hypergraph partitioning ph mod imn-parallel SpMxV

Outline

e Hypergraphs and hypergraph partitioning

@ Hypergraph models for column-parallel SpMxV
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Hypergraphs and hypergraph partitioning

@ Three entities to partition y, columns of A, and x
three types of vertices y;, ¢, and x;

@ Assign vertex weights
weight of ¢; is equal to the number of nnz in column ;.
weight of y; and x; can be set to zero.

@ x; is needed by a single column, that is c;
represent the need of ¢; on x;

@ y; is computed by contributions from different columns; each

column ¢; with aj; # 0 contributes to y;
connect y; and all such ¢;
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Hypergraph models for column- parallel SpM

Hypergraphs and hypergraph partitioning olumn-parallel SpMxV
S o problems

Column-parallel SpMxV: Communication
requirements

1 2 3 4
X X2 X5 o
N 1. Compute with off diagonal
£ plelope blocks; obtain partial y
Ty X P results, issue
6 XxX X x| .
71 VN Y N sends/receives
9 x X|
3,39 ool p. | 2. Compute with diagonal
12 xxx | x  |x x| 2
i % % block
Ll XXX XX L
15 X XK . .

i L » |3 Receive partial results on 'y
B[ I o U I for nonzero off-diagonal
F ;—E-——-X——X—ix——xa—x;; blocks and add the partial
BE xxx | p, results

S e
25 X X X XX
26 X X X X X X

The total volume of messages is equal to the number of nonzero rows in
off-diagonal blocks. (13)
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Hypergraphs and hypergraph partitioning

For column-parallel w < Az computations.

: : nj(w,r)

m(w,n

: w, 1) i mw, »

Elementary hypergraph model Combine ¢; and z;; one col-
for 1D colwise partitioning. umn needs only one z-vector
entry.

Partition the vertices into K parts (partition the data among K
processors). Part weights=processor loads in terms of number of
nonzeros.
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13 X ¢ X
15 ><

Number of nonzeros rows in
off-diagonal blocks is 5. Total
volume is 5.

Row-net rqi3 connects 2 parts; rq
connects 2 parts; rg connects 2
parts; rq connects 3 parts.
Cut-size is 5.

65 Parallel sparse matrix vector multiplications



What about load balance?

The computation is w < Az

X
0| XX X
XXX
4 X XX XX
5 X< X
7 XXX
9 XX X X
3 X
3 XXX
6 XXX
1 XX
el XX
I X XXX
8 X "
13 X < X
9 O ® 7,
There are 11 nonzeros in the Each column-vertex gets a weight
second column stripe. equal to the number of nonzeros in

the associated column of A.
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Outline

e Hypergraphs and hypergraph partitioning

@ Hypergraph models for row-column-parallel SpMxV
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s

Hypergraph models for row column-parallel SpMxV

@ Three entities to partition y, nonzeros of A, and x
three types of vertices y;, ¢, and aj

@ Assign vertex weights
weight of aj-vertex is equal to 1.
weight of y; and x; can be set to zero.

@ Xx; is needed by all a; # 0
connect x; and all such aj;

@ y; is computed by contributions from different different nonzeros;

each aj # 0 contributes to y;
connect y; and all such aj;
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Hypergraphs and hypergraph partitioning Hypergraph models for row-column-parallel SpMxV
Some other partitioning problems

Parallel SpMxV: Row-column parallel algorithm

[P,[P.[PIP,[P.[P.[P,[P.[P,[P)]
1234567890 1. Expand x vector
PA 1 4 4 4 4 .
2 « «|||2. Scalar multiply and
Py 3|1 1 1 1‘ i add
i 411 1 1 | 3 3] 4
[k :  Send x, (V<—ax+a,X,)
|Ps] 33 |3
P72 2o jandx; +l13. Fold on y vector
? ot { 35 7 (send and receive
2| 10 andi~arkiali, 2 g
~ * Send partial g partial results)

e Communication on x (expand operations): Same as that in the
row-parallel algorithm.

e Communication on y (fold operations): Same as that in the
column-parallel algorithm.
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Hypergraphs and hypergraph partitioning

Hypergraph models for row column-parallel SpMxV

For row-column-parallel y <~ Ax computations.

/

/
,
[
‘s
4 @
.
e
’
’

’

Elementary hypergraph model for row-column-parallel algorithm

Partition the vertices into K parts (partition the data among K
processors).
Part weights=processor loads in terms of nonzeros.
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Outline

e Hypergraphs and hypergraph partitioning

@ Some other partitioning problems
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Hypergraphs and hypergraph partitioning column

The approach

Put vertices to represent the data items to partition
Put nets to represent dependencies and needs
Assign weights to vertices to have load balance

Try to simplify (not lose the flexibility) by
o if two data items want to be in the same processors, amalgamate the
vertices
o if there are nets of size 1, remove them.
@ We can specify, for a set of vertices to which part it should be
assigned; if this is imposed by the problem that we want to
parallelize.

73 Parallel sparse matrix vector multiplications



Hypergraphs and hypergraph partitioning

The approach on row parallel algorithm:
partitioning wanted

R(nE)
n(j) /;;\\ ”j("i ‘/
N NG
) o ") A N
(% r; X ) (71,.) \9 )
N i) A N4 \Ji %)
\ﬁ e Combine x;:
/’7'\ \ a
ll\(k) \i‘// ’1’((’ '() \ / symmet.rlc
partitioning

yi and r; wants to be in the same part processor (owner computes
rule—avoids communication).

net ny, (i) has size 1 after amalgamation; remove it from the model. Some
ny(7) may have single vertex (in which case?)—they can be removed too.
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Hypergraphs and hypergraph partitioning

Problem 1

Problem

Describe a hypergraph model which can be used to

partition the matrix A rowwise for the y + Ax computations

under given, possibly different, partitions on the input and output
vectors x and y.

A parallel algorithm that carries out the y + Ax computations under
given partitions of x and y should have a communication phase on x, a
computation phase, and a communication phase on y.
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Hypergraphs and hypergraph partitioning

Solution to Problem 1

Problem

Describe a hypergraph model which can be used to

partition the matrix A rowwise for the y < Ax computations

under given, possibly different, partitions on the input and output
vectors x and y.

Solution
n(j) yan\
2/
Take the elementary model

and fix the vertices Xj and y; €y (0 (i) oS
to the parts as specified by ) A —

the given partitions. ,,
g p =y
n(ky N_/
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for row-parall
for column-pal

Hypergraphs and hypergraph partitioning : c column-par
Some other partitioning problems

Problem 2

Problem
Describe a hypergraph model to obtain the same partition on the input

and output vectors x and y which is
different than the partition on the rows of A for the y < Ax

computations.

The previous parallel algorithm will be used.
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Hypergraphs and hypergraph partitioning row-column- par
Some other partitioning problems

Solution to Problem 2

Problem

Describe a hypergraph model to obtain the same

partition on the input and output vectors x and y which is
different than the partition on the rows of A for the y + Ax
computations.

Take the elementary model and amalgamate the vertices x; and y;

) ()

ny(k)
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for row-parall
for column-pal

Hypergraphs and hypergraph partitioning : c column-par

Problem 3

Some other partitioning problems

Problem

Describe a hypergraph model to obtain

different partitions on x and on the rows of A, where

y is partitioned conformably with the rows of A

under the owner-computes rule for computations of the form y < Ax
followed by x < x + y.
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Hypergraphs and hypergraph partitioning

F
Some other partitioning problems

Solution to Problem 3

iy (@) (i)

(k)

(k)

(a) Elementary model for y < Ax (b) New vertices for x; «— x; + y; and the

dependencies for them.

n(j)

(k)

(k)

(c) Owner computes rule for x; < x; + y;
(d) Owner computes rule for y;
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Hypergraphs and hypergraph partitioning
Some other partitioning problems

Problem 4: Preconditioned iterative methods

@ lterative methods may converge slowly, or diverge
@ transform Ax = b to another system that is easier to solve

@ Preconditioner is a matrix that helps in obtaining desired
transformation
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imn-para
Hypergraphs and hypergraph partitioning column
Some other par

Problem 4: Preconditioned iterative methods

@ We consider parallelization of iterative methods that use
approximate inverse preconditioners

@ Approximate inverse is a matrix M such that AM =~ /

@ Instead of solving Ax = b, use right preconditioning and solve
AMy =b

and then set
x = My

o
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Hypergraphs and hypergraph partitioning
Some other partitioning problems

Problem 4: Preconditioned iterative methods

e Additional SpMxV operations with M
never form the matrix AM; perform successive SpMxVs
o Parallelizing a full step in these methods requires efficient SpMxV
operations with A and M
partition A and M
@ A blend of dependencies and interactions among matrices and
vectors
partition A and M simultaneously
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Hypergraphs and hypergraph partitioning
Some other partitioning problems

Problem 4: Preconditioned iterative methods

@ Partition A and M simultaneously

o Figure out partitioning requirements through analyzing linear vector
operations and inner products

Reminder: never communicate vector entries for these operations

o Different methods have different partitioning requirements
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Hypergraphs and hypergraph partitioning y a C ) olumn-pa
Some other partitioning problems

Problem 4: Preconditioned iterative methods

Preconditioned BiCG-STAB

i i-1 i-1 i-1 A p. 1, v should
p=r + Bi—l(p -,V ) be partitioned
p= Mpi conformably

v = Ap

s should be with r
and v

s
x should be with
pands

3
o, = (t,s)/(t,t) mmmmm)) { should be with
[ 3

=
Il
HN .
L
+
2
%N N
+
£
2
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Hypergraphs and hypergraph partitioning aph m

Some other partitioning problems

Problem 4: Preconditioned BiCG-STAB

=p, Vs, t and, x should be partitioned conformably
* What remains?
Columns of M and

rows of A should
be conformal

should be l
conformal
Rows of M and II# PAQT
columns of A QMPT
should be
conformal
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Hypergraphs and hypergraph partitioning

Some

Problem 4: Preconditioned BiCG-STAB

* We use the previously proposed models
— define operators to build composite models

" (nx)

Pyl rx)

Rowwise model (y=Ax)

87

s
W, o %
i

7 (w7

Plw, )

4

I

Colwise model (w=Mz)
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Hypergraphs and hypergraph partitioning ) V-CC
Some other partitioning problems

Problem 4: Preconditioned BiCG-STAB

@ Nevel amalgamate/unify nets of individual hypergraphs

@ combine vertices of individual hypergraphs, and connect the
composite vertex to the nets of the individual vertices

@ define multiple weights for vertices, if the multiply operations are
separated by global synchronization type of operations; individual
vertex weights are not added up.

@ need to decide how to partition matrices (lets say A rowwise and M
columnwise

e generate column-net model for the matrices to be partitioned rowwise
o generate row-net model for the matrices to be partitioned columnwise

o apply vertex amalgamation to respect the partitioning requirement
(PAQT and QMPT or PAMPT).
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Hypergraphs and hypergraph partitioning
Some other partitioning problems

Problem 4: Preconditioned BiCG-STAB

* BIiCG-STAB requires PAMPT
— Reminder: rows of A and columns of M;
columns of A and rows of M

« A rowwise (y=Ax), M columnwise (w=Mz)

(7, T (0w, 2

mwr)

Flow,7)
e
P rx) :’ )
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Hypergraphs and hypergraph partitioning Hypergra
Some other partitioning pi

Problem 4: Preconditioned BiCG-STAB
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Hypergraphs and hypergraph partitioning Hypergra
Some other partitioning pi

Problem 4: Preconditioned BiCG-STAB
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Hypergraphs and hypergraph partitioning Hypergra
Some other partitioning pi

Problem 4: Preconditioned BiCG-STAB

Parallel speed-up values

8-way 16-way

Volume [ Message | Sp. Volume [ Message [ Sp.

Matrix tot [ max | tot | max [ up tot | max [ tot [ max | up
R

Zhaol-A 4098 746 | 32.2 5.7 | 6.2 6444 586 96.7 9.3 8.7
Zhaol-M 3514 694 | 32.2 5.6 5478 551 97.0 9.3
big-A 1032 201 | 31.4 5.7 | 5.7 1581 156 73.2 7.5 7.3
big-M 989 191 | 31.9 5.6 1527 150 75.3 7.5
cagell-A 24424 4144 | 54.6 7.0 | 5.5 34835 3314 | 201.2 | 14.8 8.1
cagell-M 14663 2439 | 55.1 7.0 21010 1917 | 208.9 | 15.0
cagel2-A 87542 | 14306 | 56.0 7.0 | 5.9 [ 122878 | 11925 | 230.3 | 15.0 9.4
cagel2-M 50962 7839 | 56.0 7.0 71066 6136 | 233.1 | 15.0
epb2-A 2326 429 | 39.0 6.4 | 6.4 3357 371 | 102.8 9.6 8.6
epb2-M 2242 438 | 35.0 6.5 3335 335 84.7 8.4
epb3-A 2354 442 | 23.9 4.3 | 7.3 3971 393 66.0 6.5 | 12.4
epb3-M 3003 536 | 23.9 4.3 5023 496 66.3 6.5
mark3_060-A 5249 960 | 35.2 6.3 5.8 9370 786 | 115.0 11.3 8.7
mark3_060-M 6323 1182 | 32.2 6.0 10287 964 | 105.3 | 11.0
olafu-A 3908 960 | 25.8 5.0 | 6.7 6489 781 66.2 6.8 | 10.6
olafu-M 6749 1449 | 28.0 5.4 11258 1285 77.8 7.8
stomach-A 14614 2815 | 21.1 4.0 7.1 24436 2351 67.2 7.0 | 14.1
stomach-M 16193 3206 | 21.4 4.0 28014 2652 67.8 7.1
xenonl-A 10848 2037 | 36.2 6.5 6.7 15998 1496 | 113.2 11.3 | 11.2
xenonl-M 14437 2523 | 37.7 6.7 21459 2032 | 117.8 11.8
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Summary

A sparse matrix is a matrix with a lot of zero entries.
More importantly: all or some zeros are not stored.

Parallel SpMxV is an important computational kernel in many problems;
furthermore it characterizes a wide range of applications with irregular
computational dependency.

Row-parallel, column-parallel and row-column-parallel algorithms.

Hypergraph models can quite handy in modeling different kind of
problems.

Vertex weights are used to have load balance; nets are used to encode
data dependencies. Cut size corresponds to the total communication
volume.
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Thanks!

Thanks for your attention.

http://perso.ens-1lyon.fr/bora.ucar/

Some of the material are from papers by Aykanat, Catalyiirek, Bisseling.
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