A sparse matrix scaling algorithm and its
efficient parallelization

Bora Ucar

CNRS and LIP, ENS Lyon, France

HPCSE2013, 27-30 May, 2013, Solai, Czech Republic

Joint work with:

I_:_’atrick R. Amestoy Kamer Kaya
Umit V. Catalytrek Philip A. Knight
lain S. Duff Daniel Ruiz

1/35 Matrix scaling

0 Theory

© Distributed memory parallelization
@ Experiments

© Shared-memory parallelization
@ Experiments

Theory

Matrix scaling

Definition

Given an m X n sparse matrix A, find diagonal matrices D; > 0 and
D, > 0 such that all rows and columns of the scaled matrix

A = D,AD,

have equal norm.

e Equilibration, balancing, good pivoting strategy, numerical /optimal
properties.

@ Scaling combined with permutations can avoid many numerical
difficulties [Duff and Pralet '05] during LU factorization:
e Provides (weak) diagonal dominance
o Increases robustness of the factorization algorithms
e May improve the condition number

2/35 Matrix scaling

The sequential algorithm (Ruiz’01)

1: Dr(o) < |m><m DC(O) — In><n
2: for k =1,2,... until convergence do

Remind
33 D« diag(H"i(k)HZ) i=1,....m eminder

r;\%: jth row at it. k
4 Dj + diag (\/ch(k)Hg)j—— 1,...,n

5 Ak+1) D1(k+1)AD2(k+1)
D,(k+1) . p, (K p,-1 Ixlls = > Ixil

7. DD D WD,

[X[loo = max{|xi[}

¢: any vector norm (usually co- and 1-norms)
Convergence is achieved when

.<k)}< {.(k)}<
lgagxm{ﬂ [N} < e and max {|1 - [lg® e} < e

3/35 Matrix scaling

Theory

Features

Some properties (Ruiz'01; Knight, Ruiz, U. '12)

@ Preserves symmetry; permutation independent; amenable to
parallelization

@ With oco-norm, linear convergence with asymptotic rate of 1/2

e With 1-norm, convergence under some structural conditions (as in
some other well-known algorithms [Sinkhorn and Knopp'67])
o For symmetric matrices, converges linearly with a rate depending on
the spectrum of the scaled matrix
o For unsymmetric ones, converges linearly with a rate depending on
the second largest singular value of the scaled matrix

@ Sequential codes available in HSL library as MC77 [Ruiz'01]

@ Parallel codes available—also have been plugged into MUMPS
[Amestoy, Duff, and L'Excellent'OO]

4/35 Matrix scaling

Theory

Number of iterations

SK-1 and SK-2: Sinkhorn—Knopp algorithm in 1- and 2-norms;
A-1, A-2, and A-cco: proposed algorithm;
error tolerance ¢ = 1.0e-4.

214 matrices from UFL: real, 1000 < n < 121000, 2n < nnz < 1790000,
without explicit zeros, fully indecomposable, not a matrix of {—1,0,1}.

matrix type statistics SK-1 SK-2 A-1 A-2 A-c0
min 1 47 1 6 2

unsymmetric (64) | med 2135 4905 2436 4897 8
max 116205 177053 307672 519249 19
min 8 1 3 1 2

symmetric (104) med 238 700 32 33 13
max 11870 22302 10307 18925 19
min 73 46 7 3

sym pos def (46) | med 444 1494 14 12
max 11271 14418 17 18

5/35 Matrix scaling

Theory

Helps numerically (experiments with MUMPS)

Unsuccessful (usuc.), if MUMPS 4.10 returns a warning or an error message.

unsymmetric matrices general symmetric matrices
strategy usuc. | 2 c"i(d[()ﬁf) off-piv. | usuc. | =¥ C"C‘igzﬂf) off-piv.
no-scaling 7 1.02 — 308 23 1.09 —_— 3454
[0,3®,0] 3 1.02 | 1.23e-03 67 4 1.04 1.89¢-03 3458
[1,39,0] 3 1.01 | 1.17e-03 44 3 1.04 1.83e-03 3454
[0,100, 0] 3 1.01 | 1.54e-03 | 157 1 1.03 | 3.94e-03 3462
[1,10, 0] 3 | 1.01 | 1.54e-03 | 160 1 1.03 | 3.86e-03 | 3462
[1,100%, 0] 3 1.01 | 1.21e-05 | 148 0 1.05 | 4.97¢-03 3580
[0,3?,0] 0 1.02 | 3.78e-02 8 3 1.01 2.26e-02 5504
[1,39,0] 0 1.01 | 3.54e-02 9 2 1.02 1.74e-02 5504
[0,10?,0] 0 1.01 | 3.21e-02 8 1 1.02 | 1.32e-02 5504
[1,10®,0] 0 1.01 | 3.39e-02 8 1 1.02 | 1.36e-02 5504
[1,100?), 0] 0 1.01 | 3.50e-02 8 2 1.01 | 1.71e-02 5504
Bunch 1 1.03 | 5.83e-02 5504
SK10 0 [101[35202] 9

Moral: [Bunch'?l] for symmetric matrices, sequential environment; “SK" for
unsymmetric matrices; proposed one for symmetric matrices, parallel
environment.

6/35 Matrix scaling

e Distributed memory
parallelization
@ Experiments

12 Dr(o) < |m><m Dc(o) — In><n
2: for k =1,2,... until convergence do

3: D1<—diag(Hr,-(")Hg)i:l,...,m
D2<—diag(ch(")”g)j:l,...,n

Akt . p, (D) AD, (D)
Dr(k+1) — Dr(k) lel
Dc(k+1) — Dc(k) D271

Noga B

Distributed memory parallelization

Parallelization: Data distribution

A”, A Drp®W Dc®X D; andD,.

The scaled matrix Ak
(k)

Do not store A™" = DgWAD (¥ explicitly; access a;(¥) by

d: (i) x |ay| x dc)())

A

@ Distribute A, Dg, and D¢. At every iteration, D1 and Dy (the row
and column norms) are computed afresh.
o Matrix A is already distributed (in another context).
Each processor holds a set of entries a;; and their indices (i, j).
o Partition the diagonal elements of Dr and D¢ among processors.

Problem definition

Given a partition on A, find the best partitions for Dz and Dc.

7/35 Matrix scaling

Distributed memory parallelization

Parallelization: Computations and computational

dependencies

Local computations

Each processor p should use each (i, , a;) triplet to compute partial
results on di (/) and dx(j), e.g., in co-norm, sets

2 (i) = max {da® (i) x |25 x dc®(j) : aj € p}

Communication operations

The partial results should be combined/reduced for each dg(**1)(/).
The owner of dg(i) should set, in co-norm,

1
Jmax{diP(i): 1< p< P}

drc V(i) = drM (i) x

The owner should send dz(k*1)(/) back to the contributing processors.

v

@ Similar discussion for dc(j).

Matrix scaling

Distributed memory parallelization

Parallelization: oco-norm algorithm for step k

Processors 2 and 4 contribute to
j dr*F1(i). Whichever owns dg(i),
receives one unit of data and sends one
unit of data after computing the final

dR(k+1)(i).

Processors 1, 2, and 3 contribute to
dc k(). Whichever owns dc()),
receives two units of data and sends two

units of data after computing the final
dc ().

Matrix scaling

Distributed memory parallelization

Parallelization: Communication requirements

Common communication cost metric: the total volume.

Communication for Dg

@ The volume of data a processor receives while reducing a dg(**1) (/)
is equal to the volume of data it sends after computing dr(**1) ().

o Nonzeros in row r; are split among s, (/) processors
o All contribute to dg*1(/).
o Reduction on s, (i) partial results.
o If one of those s,(i) processors owns dg(i), s/(i) — 1 partial results
will be send to the owner.
o If owned by somebody else, then s, (i) partial results will be send to
the owner.

v
Communication for D¢
Similar observations.

10/35 Matrix scaling

Distributed memory parallelization

Parallelization: Partitioning Dz and D¢

Communication requirements

Nonzeros in row r; are split among s, (/) processors: total volume of
communication is equal to

2><Zs,) —1) = 2 X Kconn

(half for receiving contributions, half for sending back the results).

@ The total volume of communication is the same for any dg(/) to
processor assignment as long as that processor has at least one
nonzero from row r;.

Similar observation for the column c;.

Twice the requirements of parallel sparse matrix-vector multiply
operation.

11/35 Matrix scaling

Distributed memory parallelization

Summary of computational and communication
requirements

Computations (per iteration)

Op. ‘ SpMxV ‘ 1-norm ‘ oo-norm

add | nnz(A) 2 x nnz(A) 0

mult | nnz(A) | 2 x nnz(A)+ m—+n | 2 x nnz(A) + m+n
comparison 0 0 2 x nnz(A)

Communication (per iteration)

The communication operations both in the 1-norm and oco-norm
algorithms are the same as those in the computations

y < Ax
x«— ATy

when the partitions on x and y are equal to the partitions on Dr and D¢.

12/35 Matrix scaling

Distributed memory parallelization

Parallelization: Our partitioning approach

What we did?

@ To avoid extra work, use simple strategies.

@ Ensure that each scaling entry (those of D or D¢) is assigned to a
processor that contributes to that entry

@ the minimum total volume of communication under a given partition
of matrix elements.

dr(i): assign to the processor p that has an entry a; with j giving
min{|/ — j|}; in case of ties to the processor with the smallest rank.

dc(j): assign to the processor p that has an entry a;; with / giving
min{|/ — j|}; in case of ties to the processor with the smallest rank.

13/35 Matrix scaling

Distributed memory parallelization
@00

Experiments

Data set
@ Matrices from University of Florida sparse matrix collection

@ real, 1000 < n < nnz(A) < 2.0e + 6
A total of 213 matrices out of 1877 (as of Sep.'07).

Number of iterations with convergence criteria of ¢ = 1.0e — 6

@ oo-norm: Always converges very fast. Average 11.

@ 1- and 2-norms: Did not converge for 10 and 17 matrices in 5000
iterations, respectively.
o Average number of iterations in converged cases are 206 and 257,
o Matrices from two groups (GHS_indef and Schenk IBMNA) cause
problems (larger number of iterations as well). 60 matrices from
these groups.
o Excluding those matrices, the averages are 26 and 29.

14/35 Matrix scaling

Distributed memory parallelization
oeo

Parallelization results: Speedup values

Seq. Number of processors
matrix Time (s.) 2 4 8 16 @ Averages of 10 different
aug3dcqp 830 | 17| 29} 41) 45 partitions (with PaToH
306 | 19| 38| 43| 36 [Catalyiirek and Aykanat,
a2nnsnsl| 2071 18| 3.1 | 4.0 4.8 Tech.Rep (1999)]),
724 15| 18| 21 3.3 . . .
a0nsdsil 2092] 18| 31| 40| 46 @ PCcluster with a Gigabit
7.22 15 1.8 21 3.2 Ethernet switch (InteI
Pentium IV 2.6 GHz), PC
hr71 7825 20| 3.8 | 7.3 135 cluster with an Infiniband
18.107 207 34| 6.8 140 interconnect (dual AMD 150
G3_circuit 45525 | 18| 38| 7.4 | 140 Opteron processors)
17311 | 19| 33| 6.9 | 145
thermal2 57324 2.0 | 39 | 76 | 144 @ 1000 iterations’ running time
20820 16 | 34 | 65 |13.1 in seconds

@ Best three and worst three speedup values are shown—speedup tends to
be higher for matrices with larger number of nonzeros.

@ The partitions are such that they result in reduced total communication

volume, Kconn-

15/35 Matrix scaling

Distributed memory parallelization
[ele] J

Parallelization results: Speedup values

SpMxV in a more recent system:

Execution time

PETSc

64-nodes; each node has a 2.27GHz
dual quad-core Intel Xeon
(Bloomfield) CPU; 20Gbps DDR
InfiniBand. All MPI (mvapich2).

Execution time

Trilinos

16/35 Matrix scaling

e Shared-memory parallelization
@ Experiments

12 Dr(o) < |m><m Dc(o) — In><n
2: for k =1,2,... until convergence do

3: D1<—diag(Hr,-(")Hg)i:l,...,m
D2<—diag(ch(")”g)j:l,...,n

Akt . p, (D) AD, (D)
Dr(k+1) — Dr(k) lel
Dc(k+1) — Dc(k) D271

Noga B

Shared-memory parallelization

Data structures and the approach (1)

The algorithm will be parallelized using the standard OpenMP techniques
(locks, atomic instructions, and/or private memory).

Point of view of a programmer who adopts loop-level parallelism and
single-program multiple-data paradigm, without too much adaptations.

Goal: Reduce the associated overhead (size of the private memory,
number of locks, number of atomic operations, extra parallel work).

1: Dr(o) — Im><m Dc(o) — |n><n
2: for k =1,2,... until convergence do

3. D « diag (\/Hr,-(k)Hg) i=1,...,m
4 D, diag (\/ch(k)Hg)j =1,....n

5: A(k+1) — Dl(k+1)AD2(k+1)
6. D,k p,kp;—1
7. D) « D (K D,~?

17/35 Matrix scaling

Shared-memory parallelization
Data structures and the approach (2)

Compressed row storage (CRS)

The programmer knows CSR Two integer arrays (ia, jen) and a
and COO: double array A:
ia =[1 2 4 6 7 10]
1.1 0.0 0.0 0.0 0.0 jen=[1 2 4 1 3 4 2 4 5]
0.0 2200 24 00 A =1[1.12.22.43.13.34.45.25.45.5]
31 00 33 0.0 0.0 J

0.0 0.0 00 44 0. ,
00 52 00 54 55 Coordinate format (COO)

Two integer arrays (irn, jcn) and a

and also knows how to double array A:

perform operations on
matrices stored that way. irm=[1 2 2 3 3 4 5 5 5]

jen=1[1 2 4 1 3 4 2 4 5]

A =1[1.12.22.43.13.34.45.25.45.5]
v

Matrix scaling

Shared-memory parallelization

Shared memory parallelization

We do not store the scaled matrix; access its elements and compute (say

1-norm):
d, - col scaling d,- col sums
—
d, d;
row scaling a;®" row sums

We parallelize each iteration with 7 threads:

o CRS-based storage: partition the rows among the processors.
@ COO-based storage: partition the nonzeros among the processors.

19/35 Matrix scaling

Shared-memory parallelization

Parallelization with CRS (assume 1-norm scaling)

Algorithm 2: Simple parallel scaling with CRS

Input: A: n X n input matrix in CRS format
Output: d,, d.: row and column scaling vectors
for i = 1 to n in parallel do

d.fi] « 1
\\ dci] + 1 .
while not converged do o ROWS are pa rtltloned among
for i =1 to n in parallel do
L difi] 0 threads
dali] « 0 . .
wi | fort =110 in parallel do No conflict for row-sum writes
forit:vltando - .
L L dzfi) <0 @ Use private memory for column
ut for i =1 1 i llel d .
" | 7 % is the Gurrent thread id sums (size n)
sum' 0 . . .
for each nonzero ay; in row i do @ Total computational overhead
val « d[i] X aij X dct[]]
\\ add val to sum' and d5[j] Is 27n.
d [i] « sum®
g | fort=1ltwrdo @ The rowwise partitioning is
for i = 1 to n in parallel do . .
L | deli] - dafi] + db) determined dynamically at run
grror < max (max;(|1 - da), maxi(|1 — d2i])) time by OpenMP scheduling
| converged « true .
e policy.

for i = 1 to n in parallel do
L d.[i] + d.[i]/+/dii]
dei] « deld)/v/dzld]

20/35 Matrix scaling

Shared-memory parallelization

Parallelization with CRS: Improvement (1)

Algorithm 4: Part. based scaling with CRS-Cut
Input: A: n X n input matrix in CRS format and a partition

I ={R1,R2,...,R-} of rows .
Output: d,, d.: row and column scaling vectors We need prIVate memory on |y for
while not converged do columns whose nonzeros are
ini for t =1 to 7 in parallel do H H
‘ t— 1o in paral assigned to different threads.
L [difi] «0
put for t = 1 to 7 in parallel do - .
i is the current thread id @ Rows are partitioned statically
for each external row i in Ry do
sum’ <0 among threads (we know the
for each exrerin]zl nonzero a,[J]in row i do)
val « d.[i] X aij x dc[j assi nment
add val to sum' and dj[j] g
for each internal nonzero ai; in row i do NO Conﬂict fOI’ row-sum WI’iteS
val d,[i] X aij x de[j]
L add val to sum' and da[j] .
| dili] < sumt @ Use private memory for
fe h i 1 p i in Ry d H
i [ede columns that span multiple
for each nonzero a.; in row i d .
1 wal] x g X dulg] threads (size Kcyt)
add val to sum' and d|[j]

| dii] < sum®

L External nonzero aj: there are two
get fort =11 7 do

for i = 1 to cut in parallel do [
L] ety or more threads on column j.

21/35

Shared-memory parallelization

Parallelization with CRS: Improvement (1)

We need private memory only for columns touching more than one parts
(caII them /Vc).

e for a partition I1, the extra 1.1 0.0 0.0 0.0 0.0
memory per thread is 0.0 22 0.0 24 0.0
31 0.0 33 0.0 0.0
pe(M) =D 1 0.0 00 0.0 44 0.0
neNc 0.0 52 0.0 54 55
@ The computational A2 2 2 1]
overhead is

There are three columns in N¢ so
27 kcut (M) Keur = 3

22/35 Matrix scaling

Shared-memory parallelization

Parallelization with CRS: Improvement (2)

We need private memory only for columns whose nonzeros are assigned
to different threads. But a thread is not concerned with all:

Algorithm 5: Part. based scaling with CRS-SOED

Input: ﬁ:n{%rfl;g?t Té;rzit}inog:iilionml and a partition @ Rows are pa rtitioned a mong
O\ltput: d,, d.: row and column scaling vectors th reads
il nf comergeddo No conflict for row-sum writes
init l‘or t =1 to 7 in parallel do
for each external column i connected to R+ do 3
L L dsfi <o @ Use private memory for columns
pi | oo BAs same as CRS-Cut that span multiple processors.
get for tf: 1to 7 do
for each external column i of R in parallel do N P
L N e A thread knows the entries it is
concerned with (+extra space
is Fsoed)-

threads in columns: A =1[22121]
@ Total computational overhead

Fsoed =2+24+2=6 is 2K soed -

23/35 Matrix scaling

Shared-memory parallelization

Parallelization with CRS: Using atomic operations

Objective: Reduce the number of atomic operations or locks.

@ Rows are partitioned among
threads

Algorithm 7: CRS-SOED-Atom: get No conflict for row-sum writes

for £ =1 to 7 in parallel do .
L for each external column i conn. to C; do ° Use prlvate memory for columns

| (atomic) dad] < d2[i] + did] that span multiple threads.

@ Writes to dss, column-sum
array, use atomic operations (or
locks).

@ The total number of atomic operations/locks is Ksped-

@ We can reduce the total number of atomic operations/locks to
Fsoed — Keut=Fconn With an additional synchronization.

Matrix scaling

Shared-memory parallelization

Parallelization with COO (assume 1-norm scaling)

Algorithm 3: Simple parallel scaling with COO

Input: A: n X n input matrix in COO format
Output: d, d.: row and column scaling vectors

while not converged do

init for ¢t =1 to 7 in parallel do
fori=1ltondo «—— —
difi] « 0
djfi] « 0
put for each nonzero a;; in parallel do
»t is the current thread id
val d,[i] X a;; x dclj]
add val to dif¢] and d5[j] «—— |
get fort =11t 7 do
for i =1 to n in paralleldo «————|
[difi] < dafi] +di[d]
for i =1 to nin paralleldo «—————|

L dafi] + dofi] + d3[i]

Nonzeros are partitioned among
threads

Conflicts for row and
column-sum writes

Use private memory for
columns and rows (each of size
n, so 2n per thread)

Total computational overhead
is 41n.

The nonzero partitioning is
determined dynamically at run
time by OpenMP scheduling
policy.

Improvements similar to CRS and an implementation using locks and/or

atomic operations are possible.

25/35 Matrix scaling

Shared-memory parallelization
00000000

Experiments: Setup

Dual quad-core Intel Xeon (Bloomfield)

o 48GB memory
o 32KB L1, 256KB L2 caches per core
o 8MB L3 cache per socket

Dual quad-core AMD Opteron (Shanghai)

e 32GB memory
o 64KB L1, 512KB L2 caches per core
o 6MB L3 cache per socket

Algorithms are implemented in C and OpenMP

icc 12.0 and 11.1 with -O3 optimization flag

Matrix scaling

Experiments: Matrices

Shared-memory parallelization
0@000000

Properties of the matrices used in the experiments.

Matrix n nnz Avg. deg
transb 116,835 749,800 6.42
NotreDame 325,729 929,849 2.85
rajat21 411,676 1,876,011 4.56
Hamrle3 1,447,360 5,514,242 3.81
Chebyshev4 68,121 5,377,761 78.94
pre2 659,033 5,834,044 8.85
rajat30 643,994 6,175,244 9.59
Stanford_Berk. 683,446 7,583,376 11.10
torsol 116,158 8,516,500 73.32
atmosmodd 1,270,432 8,814,880 6.94
atmosmodl| 1,489,752 10,319,760 6.93
cageld 1,505,785 27,130,349 18.02

27/35 Matrix scaling

Shared-memory parallelization
00800000

Experiments: Effects of minimized metrics

The average

25

1 thread execution time without
2 threads ...)

g2 - 4threads cut minimization but

£ o8 threads with perfect near perfect

¢ load balance

°

st ..

E divided by the

205

[[B [i execution time with
o BN BN I - AN N cut minimization (using

CRS-Cut CRS-SOED COO-SOED-Atom COO0-SOED PaToH)

The cut-size minimized partitions lead to better performance.

Matrix scaling

Shared-memory parallelization
000@0000

Experiments: Speedups on Intel

—

@=o==CRS
e={le=CRS-Cut
CRS-SOED
0.5 =00
COO-SOED

4 5 6 7 8 9
threads

Matrix scaling

The speedups are
computed by using the
execution time of the
CRS- and COO-based
sequential algorithms,
respectively.

Shared-memory parallelization
[e]e]e]e] lelele]

Experiments: Speedups on AMD

35 —A)
3 — The speedups are
025 / computed by using the
§ 2 execution time of the
2 o,
15 CRS- and COO-based
@=(msCRS . .
1 4 eiih=CRS-Cut sequential algorithms,
CRS-SOED .
05 ==C00 respectively.
o COO-SOED
0 1 2 3 4 5 6 7 8 9
threads

30/35 Matrix scaling

Shared-memory parallelization

[e]e]e]e]e] Jlele]

Experiments: Speed-downs from 4 to 8

0.45 —
w 0.4 -
E
5035 -
g 0.3
g = Scatter plot of the matrices
o 0.25 1 for which an increase on the
wi
g 02 - execution time of
£015 - COO-Simple is observed
=
§ 01 4 when the number of threads
2 0.
g o5 - T is increased from 4 to 8.

' ——Linear (Trendline)

0 t T

0 5 10 15
Average number of nonzeros per row/column

31/35 Matrix scaling

Shared-memory parallelization
[e]e]e]e]e]e] Je]

Experiments: Average relative performance on Intel

3
M CRS-Simple
M CRS-
55 | MCRs-Cut
CRS-SOED
| W COO-Simple

N

COO-SOED

Avg. relative performance
N
- wv

o
wn

threads

The relative performance: average execution time of an algorithm over
the best average time.

Matrix scaling

Shared-memory parallelization
0000000e

Experiments: Average relative performance on AMD

3
M CRS-Simple
M CRS-
55 | MCRs-Cut
CRS-SOED

| W COO-Simple
COO-SOED

N

Avg. relative performance
N
- wv

o
wn

threads

The relative performance: average execution time of an algorithm over
the best average time.

Matrix scaling

Conclusion

Concluding remarks

@ Discussed a matrix scaling algorithm which helps in solving linear
systems with direct methods

@ A distributed memory, message passing implementation:

o Communication overhead was expressed to be related to
Keonn = 9, (Aj — 1), where); is the number of processors in which
the nonzeros in column j reside

@ A shared memory implementation with OpenMP:

o Memory overhead is rcur = [{j : \j > 1}
o Computational overhead is Ksoed = Kconn + Keut
o Number of atomic operations is Ksped OF Kconn

@ Not discussed (but can!): the Ks, the overhead functions, are
well-known objective functions of the hypergraph partitioning
problem. Great tools are at our disposal

34/35 Matrix scaling

Conclusion
Further information

Thank you for your attention.

@ A symmetry preserving algorithm for matrix scaling,

P. A. Knight, D. Ruiz, and B. Ugar, INRIA tech rep RR-7552.
@ A parallel matrix scaling algorithm,

P. R. Amestoy, I. S. Duff, D. Ruiz, and B. Ucar, VecPar'08.

@ On shared memory parallelization of a matrix scaling algorithm,
U. V. Catalyiirek, K. Kaya, and B. Ucar, ICPP 2012.

http://perso.ens-1lyon.fr/bora.ucar

35/35 Matrix scaling

http://perso.ens-lyon.fr/bora.ucar

Conclusion

Hypergraphs: Definitions

A hypergraph is a two-tuple 7 = (V, ') where V is a set of vertices and
N is a set of hyperedges.

A hyperedge h € N is a subset of vertices. We call them nets for short.
A weight w(v) is associated with each vertex v.

An undirected graph can be seen as a hypergraph where each net
contains exactly two vertices.

36/35 Matrix scaling

Conclusion

Hypergraphs: Example

H=(V,N)with V =1{1,2,3,4,5} N = {ny, n2, n3} where
n {1

,3,4} ny = {1,2,3,4} n3 = {2,5}

Venn diagram-like Graph-like
representation representation

37/35 Matrix scaling

Conclusion

Hypergraphs: Partitioning

M={V1,V2,...,Vk} is a K-way vertex partition if
Vi # 0,
parts are mutually exclusive: Vi NV, = 0,

parts are collectively exhaustive: V = [V«.

In I, a net connects a part if it has at least one vertex in that part, i.e., h
connects Vi if hN Vi # 0.

@ The connectivity A\(h) of a net is equal to the number of parts connected
by h.

T : 2vev w(v)
Constraint: balanced part weights)_, ., w(v) < (1+4¢)=<5—.
Objective: Minimize a function of A(-)s over the cut nets.
Hypergraph partitioning problem is NP-complete.

Matrix scaling

Conclusion

Hypergraphs partitioning: Example

H = (V,N) with 10 vertices and 4 nets, partitioned into four parts.
Vi={4,5} V,={7,10} V3=1{3,8,9} V,={1,2,6}

Objective functions:
(M) = > 1

neNc
1+1+1+1=4
K/conn(n) = Z Ap—1
I'IE./\“’C
=14+24+2+1=6
/{'soed(n) = Z)\n
neNc¢

— el

V.

39/35 Matrix scaling

Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: H = (V, ') where V corresponds to the
rows, and /N corresponds to the columns.

4-way partitioning

4 0 N]]
s H W]]
o o0 ° o
o eoeo o o
o (K o0 o |
Te & ¢]
T ¢ ¢ ¢]
LR R AR 4]

40/35

Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: H = (V, /) where V corresponds to the
rows, and ' corresponds to the columns.

A Two objective functions in shared
l o - | memory:
s H W n]
.] /{cut(n) = memory = Z 1
i) ° ® | ’
neNc¢
’ oo o °
T L L —1+1+1+1=4
: : ¢ : : Ksoed () = atomic ops = Z o
T ¢ ¢ neN¢
12 38 4 5 6 7 8 9 10 — 2 + 3 _|_ 3 + 2

41/35 Matrix scaling

	Theory
	Distributed memory parallelization
	Experiments

	Shared-memory parallelization
	Experiments

