An Exploration of Optimization Algorithms for
High Performance Tensor Completion

Shaden Smith!*, Jongsoo Park?, and George Karypis?

IDepartment of Computer Science & Engineering, University of Minnesota
2Parallel Computing Lab, Intel Corporation
*shaden@cs.umn. edu

shaden@cs.umn.edu

Outline

Introduction & Preliminaries
Tensor Completion
Evaluation Criteria

Optimization Algorithms
Alternating Least Squares
Coordinate Descent
Stochastic Gradient Descent

Comparison of Optimization Methods

Conclusions

Table of Contents

Introduction & Preliminaries
Tensor Completion
Evaluation Criteria

Tensor introduction

» Tensors are the generalization of matrices to > 3D.
» Tensors have N dimensions (or modes).
» We will use dimensions / xJx K in this talk.

users

. contexts

items

Tensor completion

» Many tensors are sparse due to missing or unknown data.
» Missing values are not treated as zero.

» Assumption: the underlying data is low rank.
» Tensor completion estimates a low rank model to recover missing
entries.
» Applications: precision healthcare, product recommendation,
cybersecurity, and others.

Tensor completion

v

v

v

Many tensors are sparse due to missing or unknown data.

» Missing values are not treated as zero.

Assumption: the underlying data is low rank.

Tensor completion estimates a low rank model to recover missing
entries.

» Applications: precision healthcare, product recommendation,
cybersecurity, and others.

The canonical polyadic decomposition (CPD) models a tensor as
the summation of rank-1 tensors.

yZ4 V4

¥

—

- H

Tensor completion with the CPD

R(i,Jj, k) is written as the inner product of A(/,:), B(j,:), and C(k,:).

2

Tensor completion with the CPD

R(i,j, k) is written as the inner product of A(/,:), B(j,:), and C(k,:).

JEEEEEEEEEE --
2 gc

L1l |

We arrive at a non-convex optimization problem:

minimize L(R, A, B,C)+ (||All +|[B|[Z + ||C||7)

~
Loss Regularization

nnz(R) f=1

F 2
E(R,A,B,C):% > ((i.j, k) =Y _A(i, f)B(j,f) (k,f))

Challenges

Optimization algorithms

» Algorithms for matrix completion are relatively mature.
» How do their tensor adaptations perform on HPC systems?
» Several properties to consider when comparing algorithms:

1. Convergence rate.

2. Number of operations and computational intensity.
3. Memory footprint.

4. Parallelism!

Experimental setup

v

Source code was implemented as part of SPLATT with
MPI1+OpenMP.

Experiments are on the Cori supercomputer at NERSC.

v

» Nodes have two sixteen-core Intel processors (Haswell).

Experiments show a rank-10 factorization of the Yahoo Music
(KDD cup) tensor.

» 210 million user-song-month ratings.

» More datasets and ranks in the paper.

v

v

Root-mean-squared error (RMSE) on a test set measures solution

quality:
_ [2-L(R,A,B,C)
RMSE = \/ nnz(R)

6

21

Table of Contents

Optimization Algorithms
Alternating Least Squares
Coordinate Descent
Stochastic Gradient Descent

6 /21

Alternating least squares (ALS)

» Each row of A is a linear least squares problem.
» H;isan |R(i,:,:)|xF matrix:
» R(i,j, k) — B(j,:) x C(k,:) (elementwise multiplication).

» A(i,:) (H,-TH,- +)\l) o H vec(R(i,:,2)).

normal eq.
o @
AlFEl]
NI N N

Parallel ALS

We impose a 1D partition on each of the factors.
Non-zeros are then distributed according to the row partitionings.
Only the updated rows need to be communicated.

vV v.v vy

If mode is short, cooperatively form rows and aggregate the
normal equations.

A

ALS evaluation

295x relative speedup and 153x speedup over base-ALS.

512.00
256.00\-. A-A base-ALS
- BE-E ALS

128.00, A
64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50
0.25

Time per epoch (s)

0'121 2 4 8 16 32 64 128 256 512 1024
Number of cores

base-ALS is a pure-MPI implementation in C++ [Karlsson et al. '15]. ALS is our
MPI+OpenMP implementation with one MPI rank per node.

Coordinate descent (CCD++)

» Select a variable and update while holding all others constant.

» Rank-1 factors are updated in sequence.
1 e — 1

10 /21

Compressed sparse fiber (CSF)

» CSF is a generalization of the CSR structure for matrices.
» Paths from roots to leaves encode non-zeros.

» CSF reduces the memory bandwidth of the tensor and also
structures accesses to the factors.

MAME | W) (1) 2
3| 2|l 1 (i) (2) ©
1l 2l Bl [i O O @
zzz% OJOIOIO0X0IOIO
. — J

1 /21

CCD++ distributed-memory evaluation

685x relative speedup and 21x speedup over base-CCD++.

256.00

128.00}

64.00"._

32.00
16.00
8.00
4.00
2.00
1.00
0.50
0.25
0.12

Time per epoch (s)

%-X base-CCD++
A-A CCD++
AL %
RN i O
A Xemee
A
A
A
AL
d

0.06]

16 32 64 128 256 512 1024
Number of cores

base-CCD++ is a pure-MPI implementation in C4++ [Karlsson et al. '15].

CCD++ is our MPI4+OpenMP implementation with two MPI ranks per node.

Stochastic gradient descent (SGD)

» Randomly select entry R(/,, k) and update A, B, and C.

» O(F) work per non-zero.

F
(Suk(—le, ZA k7f)
=1
A7) + 110k (BU,:) * C(k,2)) — AA(, -
B

A(i,:))]
Us:) + 0 [0k (AG,2) * C(k,) = AB(, 2]
)l
)-

<_
B(j,:) +
k,:) +

C(k,:) <= C(k,:) +n [0 (A(,:) * B, :)) = AC(k, :

n is the step size; typically O(1073

Stratified SGD

» Strata identify independent blocks of non-zeros.
» Each stratum is processed in parallel.

s
N

» There is only as much parallelism as the smallest dimension.

Limitations of stratified SGD:

» Sparsely populated strata are communication bound.

14 /21

Asynchronous SGD (ASGD)

» Processes overlap updates and exchange to avoid divergence.

» Local solutions are combined via a weighted sum.
» Go Hogwild! on shared-memory systems.

I'I
|

Limitations of ASGD:

» Convergence suffers unless updates are frequently exchanged.

15 /21

Hybrid stratified /asynchronous SGD

Limit the number of strata to reduce communication.

v

v

Assign multiple processes to the same stratum (called a team).

v

Each process performs updates on its own local factors.

v

At the end of a strata, updates are exchanged among the team.

>
I o

7
e

16 / 21

Effects of stratification on SGD @ 1024 cores

Hybrid stratification combines the speed of ASGD with the stability of
stratification.
32

~—a asynchronous
=—a hybrid
e—e stratified

30

0 10 20 30 40 50 60 70 80
Time (seconds)

Hybrid uses sixteen teams of four MPI processes.

17 /21

Table of Contents

Comparison of Optimization Methods

17 / 21

Strong scaling

» SGD exhibits initial slowdown as strata teams are populated.
» All methods scale to (past) 1024 cores.

4.00

............... o BB ALS
~2.00. "~ A-A CCD++ ||

Convergence @ 1 core

SGD rapidly converges to a high quality solution.

=—a ALS
&--o CCD++
— SGD

RMSE

] 2000 4000 6000 8000 10000 12000
Time (seconds)

Convergence is detected if the RMSE does not improve after 20 epochs.

Convergence @ 1024 cores

» ALS now has the lowest time-to-solution.
» CCD++ and SGD exhibit similar convergence rates.

=—a ALS
&--o CCD++
— SGD

RMSE

AR AAARAMLA|

20 30 40 50 60 70
Time (seconds)

Convergence is detected if the RMSE does not improve after 20 epochs.

Table of Contents

Conclusions

20 /21

Wrapping Up

» Careful attention to sparsity and data structures can give over
10x speedups.
» There is no “best” algorithm — it depends on your hardware
architecture and problem
» SGD: best in a serial setting.
» ALS: best in a multi-core setting or with a few nodes, but has a
large memory footprint.
» CCD++: best on large-scale systems, but requires high
memory-bandwidth.

http://cs.umn.edu/~splatt/

21 /21

http://cs.umn.edu/~splatt/

Backup Slides

Patents strong scaling

Patents is a 46 x240K x240K tensor with 2.9B non-zeros.

s)

Time per epoch (

64.000
32.00] -

=
o
[=]
o

Bl ALS |
Ak-A CCD++
® ® SGD |

4 8 16 32 64 128 256 512
Nodes

Parallel CCD++

» Shared-memory: each entry of A(:, f) is computed in parallel.
» Distributing non-zeros with a 3D grid limits communication to
the grid layers.
» Distributing non-zeros requires a; and (3; to be aggregated.
» Communication volume is O(IF) per process.
» For short modes, use a grid dimension of 1 and fully replicate the
factor.

A; L e
1 1 C

Alternating least squares (ALS)

» Normal equations N; = H,-TH,- are formed one non-zero at a time.

» H/ vec(R(i,:,:)) is similarly accumulated into a vector q;.

Algorithm 1 ALS: updating A(/,)

N, « 0F><F, q; FOFXl

: for (i,j,k) € R(i,:,:) do
x < B(j,:) * C(k,:)
N; «+ N,'+XTX
q; < q; + R(’v./7 k)XT

end for

A(i,:) < (N; + D) 1q;

N g ks ends

BLAS-3 formulation

» Element-wise computation is an outer product formulation.
» O(F?) work with O(F?) data per non-zero.

» Instead, append (B(j,:) * C(k,:)) to a matrix Z.
» When Z is full, do a rank-k update: N; < N; + z'z.

Algorithm 2 ALS: updating A(/,)

cN; «— 0FXF g 0F%t 20

. for (i,j, k) € R(i,:,:) do
Append (x < B(j,:) « C(k,:)) to Z
qi < qi + R(’vl? k)XT

end for

:N;«N;+2'2

A(i,:) < (N; + A" 1g;

N g s end

21 /21

CCD++ formulation

» O(F) work per non-zero.
» Each epoch requires NF passes over the tensor.
» Heavily dependent on memory bandwidth.

F
Sk = R(i,j, k) = > A, f)C(k, f)
f=1

R(i,:,:)
Bi— > (B, F)C(k,F))
’R(i7:.,:)

A(i,f) « B

Netflix strong scaling

2.00

Bl ALS

® ® SGD
1.00P A-A CCD++

Time per epoch (s)
° o
N [
&) =)

(=]
=}
N

0.06

0'031 5

Nodes

16 32

Communication volume on Yahoo!

6le8
A =a ALS
g e-a SGD
L d
-4 CCD++
g% . i
[}
g .
54
>
. L
2 .
w3
2
c
F]
£
£2
[}
(¥)
g _____________
El —————— A AL
g ~~~~~ A
< p
0,
| 2) ; 16 32
Nodes

Figure: Average communication volume per node on the Yahoo! dataset.
CCD++ and SGD use two MPI ranks per node and ALS uses one.

Amazon strong scaling

128.00
N B-E ALS
» A-A CCD++
@ ® SGD
64.00
0 Mpennneeee A
$ 32.00
[<]
Q.
[
I
g
16.00
0 o
£ i
= e .
A {
8.00 .\:\:/A
4.00; 3 i 16 32

Scaling factorization rank on 1024 cores

2.0

=—a ALS
---+ SGD
44 CCD++

15

Time per Epoch (s)

0.(i0 20 30 40 50 60 70 80
Rank

Figure: Effects of increasing factorization rank on the Yahoo! dataset.

21 /21

	Introduction & Preliminaries
	Tensor Completion
	Evaluation Criteria

	Optimization Algorithms
	Alternating Least Squares
	Coordinate Descent
	Stochastic Gradient Descent

	Comparison of Optimization Methods
	Conclusions

