
An Exploration of Optimization Algorithms for
High Performance Tensor Completion

Shaden Smith1∗, Jongsoo Park2, and George Karypis1

1Department of Computer Science & Engineering, University of Minnesota
2Parallel Computing Lab, Intel Corporation

∗shaden@cs.umn.edu

1 / 21

shaden@cs.umn.edu

Outline

Introduction & Preliminaries
Tensor Completion
Evaluation Criteria

Optimization Algorithms
Alternating Least Squares
Coordinate Descent
Stochastic Gradient Descent

Comparison of Optimization Methods

Conclusions

1 / 21

Table of Contents

Introduction & Preliminaries
Tensor Completion
Evaluation Criteria

Optimization Algorithms

Comparison of Optimization Methods

Conclusions

1 / 21

Tensor introduction

I Tensors are the generalization of matrices to ≥ 3D.
I Tensors have N dimensions (or modes).

I We will use dimensions I×J×K in this talk.

users

items

contexts

2 / 21

Tensor completion

I Many tensors are sparse due to missing or unknown data.
I Missing values are not treated as zero.

I Assumption: the underlying data is low rank.
I Tensor completion estimates a low rank model to recover missing

entries.
I Applications: precision healthcare, product recommendation,

cybersecurity, and others.

I The canonical polyadic decomposition (CPD) models a tensor as
the summation of rank-1 tensors.

= + · · ·+

3 / 21

Tensor completion

I Many tensors are sparse due to missing or unknown data.
I Missing values are not treated as zero.

I Assumption: the underlying data is low rank.
I Tensor completion estimates a low rank model to recover missing

entries.
I Applications: precision healthcare, product recommendation,

cybersecurity, and others.

I The canonical polyadic decomposition (CPD) models a tensor as
the summation of rank-1 tensors.

= + · · ·+

3 / 21

Tensor completion with the CPD

R(i , j , k) is written as the inner product of A(i , :), B(j , :), and C(k , :).

A

B

C

We arrive at a non-convex optimization problem:

minimize
A,B,C

L(R,A,B,C)︸ ︷︷ ︸
Loss

+λ
(
||A||2F + ||B||2F + ||C||2F

)︸ ︷︷ ︸
Regularization

L(R,A,B,C) =
1

2

∑
nnz(R)

(
R(i , j , k) −

F∑
f=1

A(i , f)B(j , f)C(k , f)

)2

4 / 21

Tensor completion with the CPD

R(i , j , k) is written as the inner product of A(i , :), B(j , :), and C(k , :).

A

B

C

We arrive at a non-convex optimization problem:

minimize
A,B,C

L(R,A,B,C)︸ ︷︷ ︸
Loss

+λ
(
||A||2F + ||B||2F + ||C||2F

)︸ ︷︷ ︸
Regularization

L(R,A,B,C) =
1

2

∑
nnz(R)

(
R(i , j , k) −

F∑
f=1

A(i , f)B(j , f)C(k , f)

)2

4 / 21

Challenges

Optimization algorithms

I Algorithms for matrix completion are relatively mature.
I How do their tensor adaptations perform on HPC systems?

I Several properties to consider when comparing algorithms:

1. Convergence rate.
2. Number of operations and computational intensity.
3. Memory footprint.
4. Parallelism!

5 / 21

Experimental setup

I Source code was implemented as part of SPLATT with
MPI+OpenMP.

I Experiments are on the Cori supercomputer at NERSC.
I Nodes have two sixteen-core Intel processors (Haswell).

I Experiments show a rank-10 factorization of the Yahoo Music
(KDD cup) tensor.

I 210 million user-song-month ratings.
I More datasets and ranks in the paper.

I Root-mean-squared error (RMSE) on a test set measures solution
quality:

RMSE =

√
2 · L(R,A,B,C)

nnz(R)

6 / 21

Table of Contents

Introduction & Preliminaries

Optimization Algorithms
Alternating Least Squares
Coordinate Descent
Stochastic Gradient Descent

Comparison of Optimization Methods

Conclusions

6 / 21

Alternating least squares (ALS)

I Each row of A is a linear least squares problem.
I Hi is an |R(i , :, :)|×F matrix:

I R(i , j , k)→ B(j , :) ∗ C(k , :) (elementwise multiplication).

I A(i , :)←
(

HT
i Hi + λI

)−1

︸ ︷︷ ︸
normal eq.

HT
i vec(R(i , :, :)).

A =

B

C

7 / 21

Parallel ALS

I We impose a 1D partition on each of the factors.
I Non-zeros are then distributed according to the row partitionings.
I Only the updated rows need to be communicated.
I If mode is short, cooperatively form rows and aggregate the

normal equations.

A

B

C

8 / 21

ALS evaluation

295× relative speedup and 153× speedup over base-ALS.

1 2 4 8 16 32 64 128 256 512 1024
Number of cores

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

base-ALS

ALS

base-ALS is a pure-MPI implementation in C++ [Karlsson et al. ’15]. ALS is our

MPI+OpenMP implementation with one MPI rank per node.
9 / 21

Coordinate descent (CCD++)

I Select a variable and update while holding all others constant.

I Rank-1 factors are updated in sequence.

10 / 21

Compressed sparse fiber (CSF)

I CSF is a generalization of the CSR structure for matrices.

I Paths from roots to leaves encode non-zeros.

I CSF reduces the memory bandwidth of the tensor and also
structures accesses to the factors.

11 / 21

CCD++ distributed-memory evaluation

685× relative speedup and 21× speedup over base-CCD++.

1 2 4 8 16 32 64 128 256 512 1024
Number of cores

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

base-CCD++

CCD++

base-CCD++ is a pure-MPI implementation in C++ [Karlsson et al. ’15].

CCD++ is our MPI+OpenMP implementation with two MPI ranks per node.
12 / 21

Stochastic gradient descent (SGD)

I Randomly select entry R(i , j , k) and update A, B, and C.
I O(F) work per non-zero.

δijk ←R(i , j , k)−
F∑

f=1

A(i , f)B(j , f)C(k , f)

A(i , :)← A(i , :) + η [δijk (B(j , :) ∗ C(k , :))− λA(i , :)]

B(j , :)← B(j , :) + η [δijk (A(i , :) ∗ C(k , :))− λB(j , :)]

C(k , :)← C(k , :) + η [δijk (A(i , :) ∗ B(j , :))− λC(k, :)]

η is the step size; typically O(10−3).

13 / 21

Stratified SGD

I Strata identify independent blocks of non-zeros.

I Each stratum is processed in parallel.

Limitations of stratified SGD:

I There is only as much parallelism as the smallest dimension.

I Sparsely populated strata are communication bound.

14 / 21

Asynchronous SGD (ASGD)

I Processes overlap updates and exchange to avoid divergence.
I Local solutions are combined via a weighted sum.

I Go Hogwild! on shared-memory systems.

Limitations of ASGD:

I Convergence suffers unless updates are frequently exchanged.

15 / 21

Hybrid stratified/asynchronous SGD

I Limit the number of strata to reduce communication.

I Assign multiple processes to the same stratum (called a team).

I Each process performs updates on its own local factors.

I At the end of a strata, updates are exchanged among the team.

16 / 21

Effects of stratification on SGD @ 1024 cores

Hybrid stratification combines the speed of ASGD with the stability of
stratification.

0 10 20 30 40 50 60 70 80
Time (seconds)

24

26

28

30

32
R

M
S

E
asynchronous

hybrid

stratified

Hybrid uses sixteen teams of four MPI processes.

17 / 21

Table of Contents

Introduction & Preliminaries

Optimization Algorithms

Comparison of Optimization Methods

Conclusions

17 / 21

Strong scaling

I SGD exhibits initial slowdown as strata teams are populated.
I All methods scale to (past) 1024 cores.

1 2 4 8 16 32 64

Nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

18 / 21

Convergence @ 1 core

SGD rapidly converges to a high quality solution.

0 2000 4000 6000 8000 10000 12000
Time (seconds)

23

24

25

26

27

28

R
M

S
E

ALS

CCD++

SGD

Convergence is detected if the RMSE does not improve after 20 epochs.

19 / 21

Convergence @ 1024 cores

I ALS now has the lowest time-to-solution.
I CCD++ and SGD exhibit similar convergence rates.

10 20 30 40 50 60 70
Time (seconds)

23

24

25

26

27

28

R
M

S
E

ALS

CCD++

SGD

Convergence is detected if the RMSE does not improve after 20 epochs.
20 / 21

Table of Contents

Introduction & Preliminaries

Optimization Algorithms

Comparison of Optimization Methods

Conclusions

20 / 21

Wrapping Up

I Careful attention to sparsity and data structures can give over
10× speedups.

I There is no “best” algorithm – it depends on your hardware
architecture and problem.

I SGD: best in a serial setting.
I ALS: best in a multi-core setting or with a few nodes, but has a

large memory footprint.
I CCD++: best on large-scale systems, but requires high

memory-bandwidth.

http://cs.umn.edu/~splatt/

21 / 21

http://cs.umn.edu/~splatt/

Backup Slides

21 / 21

Patents strong scaling

Patents is a 46×240K×240K tensor with 2.9B non-zeros.

2 4 8 16 32 64 128 256 512

Nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00
T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

21 / 21

Parallel CCD++

I Shared-memory: each entry of A(:, f) is computed in parallel.
I Distributing non-zeros with a 3D grid limits communication to

the grid layers.
I Distributing non-zeros requires αi and βi to be aggregated.
I Communication volume is O(IF) per process.

I For short modes, use a grid dimension of 1 and fully replicate the
factor.

A1

A2

B1 B2 B3

C1

C2

21 / 21

Alternating least squares (ALS)

I Normal equations Ni = HT
i Hi are formed one non-zero at a time.

I HT
i vec(R(i , :, :)) is similarly accumulated into a vector qi .

Algorithm 1 ALS: updating A(i , :)

1: Ni ← 0F×F , qi ← 0F×1

2: for (i , j , k) ∈R(i , :, :) do
3: x← B(j , :) ∗ C(k, :)
4: Ni ← Ni + xTx
5: qi ← qi + R(i , j , k)xT

6: end for
7: A(i , :)← (Ni + λI)−1qi

21 / 21

BLAS-3 formulation

I Element-wise computation is an outer product formulation.
I O(F 2) work with O(F 2) data per non-zero.

I Instead, append (B(j , :) ∗ C(k , :)) to a matrix Z.
I When Z is full, do a rank-k update: Ni ← Ni + ZTZ.

Algorithm 2 ALS: updating A(i , :)

1: Ni ← 0F×F , qi ← 0F×1, Z← 0
2: for (i , j , k) ∈R(i , :, :) do
3: Append (x← B(j , :) ∗ C(k , :)) to Z
4: qi ← qi + R(i , j , k)xT

5: end for
6: Ni ← Ni + ZTZ
7: A(i , :)← (Ni + λI)−1qi

21 / 21

CCD++ formulation

I O(F) work per non-zero.
I Each epoch requires NF passes over the tensor.

I Heavily dependent on memory bandwidth.

δijk ←R(i , j , k)−
F∑

f=1

A(i , f)B(j , f)C(k, f)

αi ←
∑

R(i ,:,:)

δijk (B(j , f)C(k , f))

βi ←
∑

R(i ,:,:)

(B(j , f)C(k , f))2

A(i , f)← αi

βi + λ

21 / 21

Netflix strong scaling

1 2 4 8 16 32
Nodes

0.03

0.06

0.12

0.25

0.50

1.00

2.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

SGD

CCD++

21 / 21

Communication volume on Yahoo!

1 2 4 8 16 32
Nodes

0

1

2

3

4

5

6

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 V
o
lu

m
e
 (

b
y
te

s
)

1e8

ALS

SGD

CCD++

Figure: Average communication volume per node on the Yahoo! dataset.
CCD++ and SGD use two MPI ranks per node and ALS uses one.

21 / 21

Amazon strong scaling

1 2 4 8 16 32
Nodes

4.00

8.00

16.00

32.00

64.00

128.00

T
im

e
 p

e
r

e
p

o
c
h

 (
s
)

ALS

CCD++

SGD

21 / 21

Scaling factorization rank on 1024 cores

10 20 30 40 50 60 70 80
Rank

0.0

0.5

1.0

1.5

2.0

T
im

e
 p

e
r

E
p

o
c
h

 (
s
)

ALS

SGD

CCD++

Figure: Effects of increasing factorization rank on the Yahoo! dataset.

21 / 21

	Introduction & Preliminaries
	Tensor Completion
	Evaluation Criteria

	Optimization Algorithms
	Alternating Least Squares
	Coordinate Descent
	Stochastic Gradient Descent

	Comparison of Optimization Methods
	Conclusions

