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@ We use a Tucker model to approximate dense tensor data
@ We introduce a parallel algorithm to compress large data sets
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Tucker Tensor Model

Tucker model generalizes the matrix SVD

Tr~Gx1UxoVxz3 W

G is core tensor U, V. W are factor matrices

Factor matrices usually tall and skinny with orthonormal columns

Notation conventions: scalar N, vector v, matrix M, tensor J° [KB09]
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Tensor-Times-Matrix (TTM)

Tensor version:
Y=X x> M

H €R/><Q><K xeRlixK MGRQXJ

Matrix version:
Yie) = MX2)

Y(2) € RQXIK X(2) c RJXIK

TTM is matrix multiplication with specified unfolding

Notation: Ty, is unfolding of J"in mode n

Grey Ballard 3



Fibers, Slices, and Unfoldings

Fibers Slices
1 3 5 7
Xn=12 4 6 8 :
5 A tensor can be reshaped into
11 3 _|1 256 matrices called unfoldings
X = 6 I8 Xo=13 4 7 3 g
4 o 1 2 3 4 @ columns correspond to fibers
@~ 5 6 7 8 @ rows correspond to slices
Unfoldings

Notation: Ty, is unfolding of J"in mode n
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Tucker Optimization Problem
V4
I N

For fixed ranks, we want to solve

min [IX -G x;1UxoVx3W
9,u,v,w” G x1Uxa2Vxz W,

which turns out to be equivalent to

max ||S|| subjectto G = X x1 UT x5 VT x3 W',
uv.w
a nonlinear, nonconvex optimization problem
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Higher-Order Orthogonal Iteration (HOOQI)

Fixing all but one factor matrix, we have a matrix problem:
- T < T
mVafo)C X4 U ><2VT X3W H

or equivalently
T
max [VI¥ea)

where Y =X x4 0" xg W', which can be solved with SVD of Y,

HOOI [DDV00, KD80] works by alternating over factor matrices,
updating one at a time by computing leading left singular vectors
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Sequentially Truncated Higher-Order SVD

@ HOOI needs accurate initialization

@ Truncated Higher-Order SVD (T-HOSVD) typically used

@ ST-HOSVD [VVM12] is more efficient than T-HOSVD, works by
e initializing with identity matricesU =LV =1, W =1
e applying one iteration of HOOI
@ ranks can be chosen based on error tolerance
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ST-HOSVD Algorithm

Input: X

1 T
@ sV X)X
@ U = leading eigenvectors of S(')
QY=xXx4U

2 T
@ V = leading eigenvectors of S()
e Za = H Xo V

3 T
@ W = leading eigenvectors of S©)
QG5=2%xsW

Left singular vectors of A computed as eigenvectors of ATA
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Data Distribution and Parallelization

Key data entities in ST-HOSVD are
@ tensors: data tensor X, intermediates Y and Z, core tensor G
@ matrices: factor matrices U, V, W, Gram matrices S{'), () s(3)

Key computations in ST-HOSVD are
@ Gram: computing S = X2)X(z)
@ Eigenvectors: computing leading eigenvectors of s
@ TTM: computing Yz = VX2
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Parallel Block Tensor Distribution

For N-mode tensor, use logical N-mode processor grid
Proc. grid: Py x Py x Pk =3 x5 x2

J L LSS

%

&

— | —

— J = 4

Local tensors have dimensions 4 x < x KX
P Py Pk
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Unfolded Tensor Distribution

Key idea: each unfolded matrix is 2D block distributed
Proc. grid: Py x Py x Pk =3 x5x2

— K =

Logical mode-2 2D processor grid: P; x PPk

Local unfolded matrices have dimensions - x 45
J ImK
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Factor Matrix Distribution

Key idea: store factor matrix redundantly across processor fibers
Proc. grid: Py x Py x Pk =3 x5 x2
Q

v v

V stored in 1D layout across each fiber of P, = 5 processors
PPy = 6 copies of V stored
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Parallel TTM

IK/ PPk

J/Py

VT Y(n)

Data distributions match TTM computation perfectly
@ fibers work independently
@ communication consists of reduce-scatter(s) within fiber
@ output distributed to match tensor block distribution
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ST-HOSVD Algorithm (again)

Input: X
Q s« X(1)X(T1) < Gram must also be parallelized
© U = leading eigenvectors of st + done redundantly
QY=xx4U + TTM makes next step smaller

2 T
Q 8%« Y)Yy
@ V = leading eigenvectors of S)
e Z = H X2 V
3 T
@ s 2747,

@ W = leading eigenvectors of S©)
Q G=2Zx3W
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Tuning Parameters

Given a tensor X and number of processors P,

@ ST-HOSVD can be performed in any mode order

e affecting both computation and communication costs
e yielding (slightly) different results

@ P can be logically decomposed into many processor grids
e having large effects on communication cost

Grey Ballard 15



Parameter Tuning Experiments
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Parallel Scaling

:ST:%%IVD Qi —*~ STHOSVD |4
<o . 8ol ]
2 o &
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Compression of Scientific Simulation Data

We applied ST-HOSVD to compress multidimensional data from
numerical simulations of combustion, including the following data sets:

@ HCCI:

e Dimensions: 672 x 672 x 33 x 627
e 672 x 672 spatial grid, 33 variables over 627 time steps
o Total size: 70 GB

o TJLR:

e Dimensions: 460 x 700 x 360 x 35 x 16
@ 460 x 700 x 360 spatial grid, 35 variables over 16 time steps
o Total size: 520 GB

o SP:

@ Dimensions: 500 x 500 x 500 x 11 x 50
@ 500 x 500 x 500 spatial grid, 11 variables over 50 time steps
o Total size: 550GB
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Compression of Scientific Simulation Data
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@ Tucker is a powerful tool for multidimensional compression
@ Large data sets require efficient parallel algorithms

@ We propose an algorithm that performs and scales well
for dense data sets
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For more details:

Parallel Tensor Compression for Large-Scale Scientific Data
Woody Austin, Grey Ballard, and Tamara G. Kolda
International Parallel and Distributed Processing Symposium 2016
http://arxiv.org/abs/1510.06689
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