
Parallel Tensor Compression for
Large-Scale Scientific Data

Woody Austin, Grey Ballard, Tamara G. Kolda

April 14, 2016

SIAM Conference on Parallel Processing for Scientific Computing
MS 44/52: Parallel Algorithms for Tensor Computations

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

(SAND2015-9290 C)



Summary

Spatial

Grid

Spatial

Grid

Spatial

Grid

Spatial

Grid

Spatial

Grid

Spatial

Grid

← Variables→
←

Ti
m

e
→

10−6 10−5 10−4 10−3 10−2

101

102

103

104

5

16

55

231

5,580

Relative Normwise Error

C
om

pr
es

si
on

R
at

io
Natural five-way multiway
structure of scientific data

Compression rates as fidelity varies
for 550 GB simulation dataset

We use a Tucker model to approximate dense tensor data
We introduce a parallel algorithm to compress large data sets

Grey Ballard 1



Tucker Tensor Model

Tucker model generalizes the matrix SVD

T ≈ G×1 U×2 V×3 W

G is core tensor U,V,W are factor matrices

Factor matrices usually tall and skinny with orthonormal columns
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Notation conventions: scalar N, vector v, matrix M, tensor T [KB09]



Tensor-Times-Matrix (TTM)

Tensor version:
Y = X×2 M

Y ∈ RI×Q×K X ∈ RI×J×K M ∈ RQ×J

Matrix version:
Y(2) = MX(2)

Y(2) ∈ RQ×IK X(2) ∈ RJ×IK

TTM is matrix multiplication with specified unfolding
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Notation: T(n) is unfolding of T in mode n



Fibers, Slices, and Unfoldings

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 
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(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

⟨X, Y ⟩ =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that ⟨X, X ⟩ = ∥X ∥2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though
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Fibers Slices

Unfoldings

A tensor can be reshaped into
matrices called unfoldings

columns correspond to fibers

rows correspond to slices
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Notation: T(n) is unfolding of T in mode n



Tucker Optimization Problem

For fixed ranks, we want to solve

min
G,U,V,W

‖X− G×1 U×2 V×3 W‖ ,

which turns out to be equivalent to

max
U,V,W

‖G‖ subject to G = X×1 UT ×2 VT ×3 WT,

a nonlinear, nonconvex optimization problem
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Higher-Order Orthogonal Iteration (HOOI)

Fixing all but one factor matrix, we have a matrix problem:

max
V

∥∥∥X×1 Û
T ×2 VT ×3 Ŵ

T
∥∥∥

or equivalently
max

V

∥∥∥VTY(2)

∥∥∥
F

where Y = X×1 Û
T ×3 Ŵ

T
, which can be solved with SVD of Y(2)

HOOI [DDV00, KD80] works by alternating over factor matrices,
updating one at a time by computing leading left singular vectors
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Sequentially Truncated Higher-Order SVD

HOOI needs accurate initialization

Truncated Higher-Order SVD (T-HOSVD) typically used

ST-HOSVD [VVM12] is more efficient than T-HOSVD, works by
initializing with identity matrices U = I, V = I, W = I
applying one iteration of HOOI
ranks can be chosen based on error tolerance
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ST-HOSVD Algorithm

Input: X
1 S(1) ← X(1)XT

(1)

2 U = leading eigenvectors of S(1)

3 Y = X×1 U
4 S(2) ← Y(2)YT

(2)

5 V = leading eigenvectors of S(2)

6 Z = Y×2 V
7 S(3) ← Z(3)ZT

(3)

8 W = leading eigenvectors of S(3)

9 G = Z×3 W

Left singular vectors of A computed as eigenvectors of ATA
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Data Distribution and Parallelization

Key data entities in ST-HOSVD are
tensors: data tensor X, intermediates Y and Z, core tensor G
matrices: factor matrices U,V,W, Gram matrices S(1),S(2),S(3)

Key computations in ST-HOSVD are
Gram: computing S(2) = X(2)XT

(2)

Eigenvectors: computing leading eigenvectors of S(2)

TTM: computing Y(2) = VTX(2)
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Parallel Block Tensor Distribution

For N-mode tensor, use logical N-mode processor grid
Proc. grid: PI × PJ × PK = 3× 5× 2

← J →

←
I
→

←
K
→

Local tensors have dimensions I
PI
× J

PJ
× K

PK
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Unfolded Tensor Distribution

Key idea: each unfolded matrix is 2D block distributed
Proc. grid: PI × PJ × PK = 3× 5× 2

← IK →

↓

J

↑

X(2)

Logical mode-2 2D processor grid: PJ × PIPK
Local unfolded matrices have dimensions J

PJ
× IK

PIPK
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Factor Matrix Distribution

Key idea: store factor matrix redundantly across processor fibers
Proc. grid: PI × PJ × PK = 3× 5× 2

V V. . .

Q

↓

J

↑

V stored in 1D layout across each fiber of PJ = 5 processors
PIPK = 6 copies of V stored
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Parallel TTM

Q

J/PJ

VT

•

IK/PIPK

J
PJ

Y(n)

Data distributions match TTM computation perfectly
fibers work independently
communication consists of reduce-scatter(s) within fiber
output distributed to match tensor block distribution
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ST-HOSVD Algorithm (again)

Input: X
1 S(1) ← X(1)XT

(1) ← Gram must also be parallelized

2 U = leading eigenvectors of S(1) ← done redundantly
3 Y = X×1 U ← TTM makes next step smaller
4 S(2) ← Y(2)YT

(2)

5 V = leading eigenvectors of S(2)

6 Z = Y×2 V
7 S(3) ← Z(3)ZT

(3)

8 W = leading eigenvectors of S(3)

9 G = Z×3 W
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Tuning Parameters

Given a tensor X and number of processors P,

ST-HOSVD can be performed in any mode order
affecting both computation and communication costs
yielding (slightly) different results

P can be logically decomposed into many processor grids
having large effects on communication cost
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Parameter Tuning Experiments
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Varying mode order for tensor of
size 25×250×250×250 with

reduced size 10×10×100×100.

Varying processor grid for tensor of
size 384×384×384×384 with

reduced size of 96×96×96×96.
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Parallel Scaling
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Weak scaling for
200k×200k×200k×200k
tensor with reduced size

20k×20k×20k×20k ,
using k4 nodes for 1 ≤ k ≤ 6.

Strong scaling for
200×200×200×200

tensor with reduced size
20×20×20×20,

using 2k nodes for 0 ≤ k ≤ 9.
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Compression of Scientific Simulation Data

We applied ST-HOSVD to compress multidimensional data from
numerical simulations of combustion, including the following data sets:

HCCI:
Dimensions: 672× 672× 33× 627
672× 672 spatial grid, 33 variables over 627 time steps
Total size: 70 GB

TJLR:
Dimensions: 460× 700× 360× 35× 16
460× 700× 360 spatial grid, 35 variables over 16 time steps
Total size: 520 GB

SP:
Dimensions: 500× 500× 500× 11× 50
500× 500× 500 spatial grid, 11 variables over 50 time steps
Total size: 550GB
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Compression of Scientific Simulation Data
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Compression ratio: IJK
PQR+IP+JQ+KR Relative Normwise Error: ‖X−X̂‖‖X‖
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Summary

Tucker is a powerful tool for multidimensional compression

Large data sets require efficient parallel algorithms

We propose an algorithm that performs and scales well
for dense data sets
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For more details:

Parallel Tensor Compression for Large-Scale Scientific Data
Woody Austin, Grey Ballard, and Tamara G. Kolda

International Parallel and Distributed Processing Symposium 2016
http://arxiv.org/abs/1510.06689
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