Parallel Tensor Compression for Large-Scale Scientific Data

Woody Austin, Grey Ballard, Tamara G. Kolda

April 14, 2016

SIAM Conference on Parallel Processing for Scientific Computing MS 44/52: Parallel Algorithms for Tensor Computations

Summary

Natural five-way multiway structure of scientific data

Compression rates as fidelity varies for 550 GB simulation dataset

- We use a Tucker model to approximate dense tensor data
- We introduce a parallel algorithm to compress large data sets

Tucker Tensor Model

Tucker model generalizes the matrix SVD

Factor matrices usually tall and skinny with orthonormal columns
Notation conventions: scalar N, vector \mathbf{v}, matrix M, tensor \mathcal{T} [KB09]

Tensor-Times-Matrix (TTM)

Tensor version:

$$
\begin{array}{rl}
\boldsymbol{y}=\boldsymbol{x}_{\times 2} \mathbf{M} \\
\boldsymbol{y} \in \mathbb{R}^{\prime \times Q \times K} & x \in \mathbb{R}^{\prime \times J \times K} \quad \mathbf{M} \in \mathbb{R}^{a \times J}
\end{array}
$$

Matrix version:

$$
\begin{gathered}
\mathbf{Y}_{(2)}=\mathbf{M} \mathbf{X X}_{(2)} \\
\mathbf{Y}_{(2)} \in \mathbb{R}^{Q \times 1 K} \quad \mathbf{X}_{(2)} \in \mathbb{R}^{J \times I K}
\end{gathered}
$$

TTM is matrix multiplication with specified unfolding

Notation: $\mathbf{T}_{(n)}$ is unfolding of \mathcal{T} in mode n

Fibers, Slices, and Unfoldings

Fibers

Slices

A tensor can be reshaped into matrices called unfoldings

- columns correspond to fibers
- rows correspond to slices

Unfoldings

Notation: $\mathbf{T}_{(n)}$ is unfolding of \mathcal{T} in mode n

Tucker Optimization Problem

For fixed ranks, we want to solve

$$
\min _{\mathcal{G}, \mathbf{U}, \mathbf{V}, \mathbf{w}}\left\|\mathcal{X}-\boldsymbol{\mathcal { G }} \times_{1} \mathbf{U} \times_{2} \mathbf{V} \times_{3} \mathbf{W}\right\|,
$$

which turns out to be equivalent to
$\max _{\mathbf{U}, \mathbf{V}, \mathbf{W}}\|\mathcal{G}\|$ subject to $\mathcal{G}=\mathcal{X} \times{ }_{1} \mathbf{U}^{\top} \times{ }_{2} \mathbf{V}^{\top} \times{ }_{3} \mathbf{W}^{\top}$,
a nonlinear, nonconvex optimization problem

Higher-Order Orthogonal Iteration (HOOI)

Fixing all but one factor matrix, we have a matrix problem:

$$
\max _{\mathbf{V}}\left\|\mathcal{X} \times_{1} \hat{\mathbf{U}}^{\top} \times_{2} \mathbf{V}^{\top} \times_{3} \hat{\mathbf{W}}^{\top}\right\|
$$

or equivalently

$$
\max _{\mathbf{V}}\left\|\mathbf{V}^{\top} \mathbf{Y}_{(2)}\right\|_{F}
$$

where $\boldsymbol{y}=\boldsymbol{X} \times{ }_{1} \hat{\mathbf{U}}^{\top} \times_{3} \hat{\mathbf{W}}^{\top}$, which can be solved with SVD of $\mathbf{Y}_{(2)}$

HOOI [DDV00, KD80] works by alternating over factor matrices, updating one at a time by computing leading left singular vectors

Sequentially Truncated Higher-Order SVD

- HOOI needs accurate initialization
- Truncated Higher-Order SVD (T-HOSVD) typically used
- ST-HOSVD [VVM12] is more efficient than T-HOSVD, works by
- initializing with identity matrices $\mathbf{U}=\mathbf{I}, \mathbf{V}=\mathbf{I}, \mathbf{W}=\mathbf{I}$
- applying one iteration of HOO
- ranks can be chosen based on error tolerance

ST-HOSVD Algorithm

Input: X
(1) $\mathbf{S}^{(1)} \leftarrow \mathbf{X}_{(1)} \mathbf{X}_{(1)}^{\top}$
(2) $\mathbf{U}=$ leading eigenvectors of $\mathbf{S}^{(1)}$
(3) $\boldsymbol{y}=\boldsymbol{X} \times_{1} \mathbf{U}$
(9) $\mathbf{S}^{(2)} \leftarrow \mathbf{Y}_{(2)} \mathbf{Y}_{(2)}^{\top}$
(0) $\mathbf{V}=$ leading eigenvectors of $\mathbf{S}^{(2)}$
(0) $z=y \times{ }_{2} V$
(1) $\mathbf{S}^{(3)} \leftarrow \mathbf{Z}_{(3)} \mathbf{Z}_{(3)}^{\top}$
(3) $\mathbf{W}=$ leading eigenvectors of $\mathbf{S}^{(3)}$
(0) $\mathcal{G}=z \times_{3} w$

Left singular vectors of \mathbf{A} computed as eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$

Data Distribution and Parallelization

Key data entities in ST-HOSVD are

- tensors: data tensor \mathcal{X}, intermediates \mathcal{y} and \mathbb{Z}, core tensor \mathcal{G}
- matrices: factor matrices $\mathbf{U}, \mathbf{V}, \mathbf{W}$, Gram matrices $\mathbf{S}^{(1)}, \mathbf{S}^{(2)}, \mathbf{S}^{(3)}$

Key computations in ST-HOSVD are

- Gram: computing $\mathbf{S}^{(2)}=\mathbf{X}_{(2)} \mathbf{X}_{(2)}^{\top}$
- Eigenvectors: computing leading eigenvectors of $\mathbf{S}^{(2)}$
- TTM: computing $\mathbf{Y}_{(2)}=\mathbf{V}^{\top} \mathbf{X}_{(2)}$

Parallel Block Tensor Distribution

For N-mode tensor, use logical N-mode processor grid Proc. grid: $P_{I} \times P_{J} \times P_{K}=3 \times 5 \times 2$

Local tensors have dimensions $\frac{1}{P_{I}} \times \frac{J}{P_{J}} \times \frac{K}{P_{K}}$

Unfolded Tensor Distribution

Key idea: each unfolded matrix is 2D block distributed Proc. grid: $P_{I} \times P_{J} \times P_{K}=3 \times 5 \times 2$

Logical mode-2 2D processor grid: $P_{J} \times P_{I} P_{K}$ Local unfolded matrices have dimensions $\frac{J}{P_{J}} \times \frac{I K}{P_{I} P_{K}}$

Factor Matrix Distribution

Key idea: store factor matrix redundantly across processor fibers Proc. grid: $P_{I} \times P_{J} \times P_{K}=3 \times 5 \times 2$

V stored in 1D layout across each fiber of $P_{J}=5$ processors $P_{I} P_{K}=6$ copies of V stored

Parallel TTM

Data distributions match TTM computation perfectly

- fibers work independently
- communication consists of reduce-scatter(s) within fiber
- output distributed to match tensor block distribution

ST-HOSVD Algorithm (again)

Input: X
(1) $\mathbf{S}^{(1)} \leftarrow \mathbf{X}_{(1)} \mathbf{X}_{(1)}^{\top}$
\leftarrow Gram must also be parallelized
(2) $\mathbf{U}=$ leading eigenvectors of $\mathbf{S}^{(1)}$ \leftarrow done redundantly
(3) $\boldsymbol{y}=\boldsymbol{x} \times{ }_{1} \mathbf{U}$
\leftarrow TTM makes next step smaller
(9) $\mathbf{S}^{(2)} \leftarrow \mathbf{Y}_{(2)} \mathbf{Y}_{(2)}^{\top}$
(0) $\mathbf{V}=$ leading eigenvectors of $\mathbf{S}^{(2)}$
(0) $z=y \times 2 v$
(1) $\mathbf{S}^{(3)} \leftarrow \mathbf{Z}_{(3)} \mathbf{Z}_{(3)}^{\top}$
(1) $\mathbf{W}=$ leading eigenvectors of $\mathbf{S}^{(3)}$
(0) $\mathcal{S}=z \times_{3} W$

Tuning Parameters

Given a tensor \mathcal{X} and number of processors P,

- ST-HOSVD can be performed in any mode order
- affecting both computation and communication costs
- yielding (slightly) different results
- P can be logically decomposed into many processor grids
- having large effects on communication cost

Parameter Tuning Experiments

Varying mode order for tensor of size $25 \times 250 \times 250 \times 250$ with reduced size $10 \times 10 \times 100 \times 100$.

Varying processor grid for tensor of size $384 \times 384 \times 384 \times 384$ with reduced size of $96 \times 96 \times 96 \times 96$.

Parallel Scaling

Weak scaling for
$200 k \times 200 k \times 200 k \times 200 k$ tensor with reduced size $20 k \times 20 k \times 20 k \times 20 k$, using k^{4} nodes for $1 \leq k \leq 6$.

Strong scaling for $200 \times 200 \times 200 \times 200$ tensor with reduced size

$$
20 \times 20 \times 20 \times 20,
$$

using 2^{k} nodes for $0 \leq k \leq 9$.

Compression of Scientific Simulation Data

We applied ST-HOSVD to compress multidimensional data from numerical simulations of combustion, including the following data sets:

- HCCI:
- Dimensions: $672 \times 672 \times 33 \times 627$
- 672×672 spatial grid, 33 variables over 627 time steps
- Total size: 70 GB
- TJLR:
- Dimensions: $460 \times 700 \times 360 \times 35 \times 16$
- $460 \times 700 \times 360$ spatial grid, 35 variables over 16 time steps
- Total size: 520 GB
- SP:
- Dimensions: $500 \times 500 \times 500 \times 11 \times 50$
- $500 \times 500 \times 500$ spatial grid, 11 variables over 50 time steps
- Total size: 550GB

Compression of Scientific Simulation Data

Compression ratio: $\frac{I J K}{P Q R+I P+J Q+K R}$
Relative Normwise Error: $\frac{\|x-\hat{x}\|}{\|x\|}$

Summary

- Tucker is a powerful tool for multidimensional compression
- Large data sets require efficient parallel algorithms
- We propose an algorithm that performs and scales well for dense data sets

For more details:

Parallel Tensor Compression for Large-Scale Scientific Data Woody Austin, Grey Ballard, and Tamara G. Kolda International Parallel and Distributed Processing Symposium 2016
 http://arxiv.org/abs/1510.06689

References

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
On the best rank-1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ approximation of higher-order tensors.
SIAM J. Matrix Analysis and Applications, 21(4):1324-1342, 2000.
围 Tamara G. Kolda and Brett W. Bader.
Tensor decompositions and applications.
SIAM Review, 51(3):455-500, September 2009.
Pieter M. Kroonenberg and Jan De Leeuw.
Principal component analysis of three-mode data by means of alternating least squares algorithms.
Psychometrika, 45(1):69-97, 1980.
軎 Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen.
A new truncation strategy for the higher-order singular value decomposition.
SIAM Journal on Scientific Computing, 34(2):A1027-A1052, 2012.

