gfun[listtoratpoly] - find a rational generating function

gfun[seriestoratpoly] - find a rational approximant

Calling Sequence

listtoratpoly(l, x, <[typelist]>)
seriestoratpoly(s, <[typelist]>)

Parameters

l - a list
s - a series
x - the unknown variable
[typelist] - (optional) a list of generating function types

Description

- The procedures listtoratpoly and seriestoratpoly compute a rational function in \(x \) for the generating function of the expressions in \(l \) or \(s \), this generating function being of one of the types specified by typelist for example, ordinary (ogf) or exponential (egf). For a full list of available choices see gftypes).
- These functions are frontends to convert[ratpoly] which performs the actual computation.
- If typelist contains more than one element, these types are tried in order. If typelist is not provided, a default optionsgf=['ogf','egf'] is used.
- The output is a list whose second element is the type for which a solution was found, and whose first element is the rational function.
- One should give as many terms as possible in the list \(l \) or the series \(s \).

Examples

If the input is the first few elements of the Fibonacci sequence, the the output is the generating series for the Fibonacci numbers.

\[
\begin{align*}
\text{> with(gfun):} & \quad \text{1:=[1,1,2,3,5,8,13];} \\
& \quad l := [1, 1, 2, 3, 5, 8, 13] \quad (2.1) \\
\text{> listtoratpoly(l,x);} & \quad \left[\frac{-1}{-1 + x + x^2}, \text{ogf} \right] \quad (2.2) \\
\text{> seriestoratpoly(series(1+x+2*x^2*2!+3*x^3*3!+5*x^4*4!+8*x^5*5!+13*x^6*6!,x,8),[\{}\text{'egf'}\}]};
\end{align*}
\]
$$\left[-\frac{1}{-1 + x + x^2}, \text{egf} \right]$$ (2.3)

See Also

gfun, gfun[parameters], convert[ratpoly]