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The experimental approach in mathematics consists of three steps: com-
putation of high-precision approximations; computation of conjectured rela-
tions from these approximations; proofs of these conjectures. These three
steps require efficient algorithms, of different natures. The aim of this post-
doc is to advance the algorithmic knowledge on tools helping the discovery
of conjectures. In this context, two main tools are used to discover relations
between approximations: Padé-Hermite approximants, that uncover linear
relations with polynomial coefficients between formal power series; the LLL
algorithm for short vectors in Euclidean lattices, which is used to conjecture
linear relations with integer coefficients between real numbers known with
high precision. Popular and efficient implementations of these algorithms
are developed in the AriC team, in the gfun Maple package [7] and in the
fplll and hplll C++ libraries, partially accessible from Sage [8].

The aim of this post-doc is to study how these computations can be per-
formed more efficiently when the input data possesses an extra structure. In
both cases, providing efficient and easy-to-use implementations of the state
of the art could be a good starting point for further exploration.

1. Structured Padé-Hermite approximants

Given formal power series F = (f1, . . . , fn) in K[[x]]n where K is an ar-
bitrary field, and given nonnegative integers d = (d1, . . . , dn), an n-tuple of
polynomials P = (P1, . . . , Pn) in K[x]n is called a Padé-Hermite approximant
of F of type d when

(1) P · F = P1f1 + · · ·+ Pnfn = O(xN )

with N = (d1 + · · ·+ dn) + n− 1 and degPi ≤ di for 1 ≤ i ≤ n.
These approximants have been introduced by Hermite in his proof of the

transcendence of e and remain an important tool in recent proofs of tran-
scendence [1]. The coefficients of the polynomials Pi are solutions of a linear
system and can therefore be computed in O(N3) operations in K, or even
O(N θ) operations in K, where θ ∈ [2, 3] is a feasible exponent for the com-
plexity of matrix product.
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The n-tuples P obeying the relation (1) form a free sub-module of K[x]n

of rank n. One can compute special bases of it, called minimal bases, or σ-
bases, that contain a Padé-Hermite approximant of type d in only O(nN2)
operations inK, by an algorithm that generalizes the extended gcd algorithm.
It is even possible to go further and it has been proved that an algorithm
due to Beckermann and Labahn in 1994 [2] performs this computation in
only O(nθ−1N log2N) operations in K, where again θ is the exponent of the
complexity of matrix product. The same complexity can also be achieved by
a probabilistic algorithm exploiting the structure of the matrix underlying
the linear algebra system [3], which is of quasi-Toeplitz type (a generalization
of Sylvester’s matrix underlying the gcd). Generalizations to other types of
structures, still in the same complexity, are also possible [5]. With respect
to the sizes of the input and output of the Padé-Hermite problem, that are
both in O(nN), the complexities of these algorithms are close to optimal.

In large size computations arising in experimental mathematics and no-
tably for applications in combinatorics or physics, the input F itself is struc-
tured and can be stored in size only N . Two important special cases are
differential approximants, where F = (f, f ′, f ′′, . . . , f (n−1)) is built from the
first derivatives of a given power series f ; and algebraic approximants, where
it is built from the first powers of the power series. The aim is to conjec-
ture linear differential or polynomial equations annihilating the power series.
Besides, the real aim is not a full basis of the module of approximants, but
a single minimal approximant. The input and the output then have size
only N . A natural and important question is therefore

Can one exploit this supplementary structure of the quasi-
Toeplitz matrix to decrease the complexity of the computation
with respect to N?

2. Sparse Vectors in Lattices

Analogous questions arise in Euclidean lattices, that are modules over the
ring of integers rather than polynomials. The main algorithm in this area is
LLL, invented by Lenstra, Lenstra and Lovasz in 1982 [4], where they gave
the first algorithm for the factorization of polynomials in Q[z] that runs in
polynomial complexity. Since then, an abundant literature has been devoted
to applications, extensions and improvements of this algorithm. A good
survey of the recent state of the art has been published after a conference
organized on the occasion of its 25 years [6]. The chapters due to Damien
Stehlé and Guillaume Hanrot (both members of AriC) are the most relevant
to the applications to experimental mathematics. The LLL algorithm dis-
covers short vectors in a Euclidean lattice — a discrete subgroup of Rd — in
the norm L2 sense. Finding the non-zero vectors of minimal norm is called
the shortest vector problem and known to be NP-hard. In polynomial time,
LLL manages to find non-zero vectors whose norms are not necessarily the
shortest possible ones, but that are at a controlled factor of them. Using
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the known bounds on this factor makes it possible to encode approximation
problem into lattices in such a way that the vectors returned by LLL are in-
deed minimal. The main use of this technique in experimental mathematics
is the quest for linear dependence over Q between real numbers given by high
precision approximations. The simplest example is given by the first pow-
ers 1, α, α2, . . . , αd of a real number α, where a linear relation yields a conjec-
ture of the algebraicity of α with a candidate minimal polynomial. In Maple,
the function identify uses the numbers (1,

√
2,
√
3, π, ln 2, ln 3, ζ(3), ζ(5), x),

where x is given by the user, to “recognize” x if it is a linear combination of
the preceding ones over Q. Nonetheless, the complexity of LLL, even though
it is polynomial, remains relatively large and a straightforward extension of
this functionality to bases of thousands of constants is impossible.

Here again, this specific question offers an underlying structure that is
not exploited by the algorithm: all the constants except one are known in
advance and do not change from one execution of the algorithm to the next;
rather than being short, the vectors that are desired should more importantly
be sparse. The question to be explored is thus:

Can one exploit the supplementary structure of the problem
of identifying constants so as to reduce the complexity of the
computation with respect to dimension?
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