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Asymptotics of Multiple Binomial Sums

Input:

Multiple 

Binomial Sum

Output:

Asymptotic 
behaviour

Sn = ∑
r≥0

∑
s≥0

(−1)n+r+s(n
r) (n

s) (n + s
s ) (n + r

r ) (2n − r − s
n )

  Sn = 16n n−3/2 2
π3 (1 −

9
16n

+ O ( 1
n2 )), n → ∞

Generating function

is a diagonal

S(z) = ∑
n≥0

Snzn = Diag
1

1 + t(1 + u1)(1 + u2)(1 − u1u3)(1 − u2u3)

z2 (4z + 1) (16z − 1) S(3)(z) + ⋯ + 2 (30z + 1) S(z) = 0

 satisfies 
a LDE

S(z)

easy

Griffiths-Dwork

reduction

analytic combinatorics

analytic 
combinatorics 

in several 
variables

Aim: 
compare 

these 
approaches
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I. Multiple Binomial Sums, 
Diagonals and Multiple Integrals
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1
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Definition

If  is a multivariate rational function with Taylor expansionF(z) =
G(z)
H(z)

its diagonal is Diag F = ∑
k≥0

ck,…,kzk .

✓
2k

k

◆
:

1

1� x� y
= 1 + x+ y + 2xy + x2 + y2 + · · ·+ 6x2y2 + · · ·

1

k + 1

✓
2k

k

◆
:

1� 2x

(1� x� y)(1� x)
= 1+y+1xy�x2+y2+· · ·+2x2y2+· · ·

Apéry’s  :ak
1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

in this talk
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F(z) = ∑
i∈ℕn

ci zi,



Multiple Binomial Sums
over a field 𝕂

Sequences constructed from

using algebra operations and

the binomial sequence ;


geometric sequences 


Kronecker’s 

(n, k) ↦ (n
k)

n ↦ Cn, C ∈ 𝕂;

δ : n ↦ δn

affine changes of indices 


indefinite summation 

(un) ↦ (uλ(n));

(un,k) ↦ ( ∑
k=0m

un,k) .
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From Sum to Residue to Diagonal

un =
n

∑
k=0

(n
k)

2

( = (2n
n ))

(n
k) := [xk](1 + x)n =

1
2πi ∮ (1 + x)n dx

xk+1

(n
k)

2

=
1

(2πi)2 ∮ (1 + x1)n(1 + x2)n dx1dx2

xk+1
1 xk+1

2
n

∑
k=0

(n
k)

2

=
1

(2πi)2 ∮ (1 + x1)n(1 + x2)n 1 − 1/(x1x2)n+1

x1x2 − 1
dx1dx2

∑
n≥0

n

∑
k=0

(n
k)

2

zn =
1

(2πi)2 ∮ ( 1
x1x2 − z(1 + x1)(1 + x2)

+
1

1 − z(1 + x1)(1 + x2) ) dx1dx2

1 − x1x2

Geometric 
sums

= Diag (( 1
1 − z(1 + x1)(1 + x2)

+
1

1 − zx1x2(1 + x1)(1 + x2) ) 1
1 − x1x2 ) and
× x1x2

z ↦ zx1x2

Can be turned into a general algorithm
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Diagonals & Multiple Binomial Sums

[Bostan-Lairez-S.17]

> BinomSums[sumtores](S,u): (…)

Thm. Diagonals ≡ binomial sums with 1 free index.

has for diagonal the generating function of  Sn

1
1 + t(1 + u1)(1 + u2)(1 − u1u3)(1 − u2u3)

Sn = ∑
r≥0

∑
s≥0

(−1)n+r+s(n
r) (n

s) (n + s
s ) (n + r

r ) (2n − r − s
n )
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II. Aside: Griffiths-Dwork Reduction
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Diagonals as Integrals

F(z) =
G(z)
H(z)

⇒ Diag F = ( 1
2πi )

n−1

∮ F(z1, …, zn−1,
t

z1⋯zn−1 ) dz1⋯dzn−1

z1⋯zn−1
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Int. over a cycle 
where Q ≠ 0.

 square-freeQ

LDE for Integrals: Griffiths-Dwork Method

1. While , reduce  modulo m > 1 P J := ⟨∂1Q, …, ∂nQ⟩

Basic idea

and integrate by parts

2. Apply to  until a linear dependency is found.I, I′￼, I′￼′￼, …

 [Griffiths70;Christol84;Bostan-Lairez-S.13;Lairez16] 

 becomes J ⟨z1∂1H − zn∂nH, …, zn−1∂n−1H − zn∂nH⟩
Ideal of critical 

points later
If  is the GF of ,P/Q Diag(G/H)

I(t) = ∮
P(t, x)

Qm(t, x)
dx

P
Qm

=
r + v1∂1Q + … + vn∂nQ

Qm
=

r
Qm

+
P̃

Qm−1
+ derivatives
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Diagonals are Differentially Finite 
[Christol84,Lipshitz88]

rat.
alg.

diag.
D-finite

Thm. If  has degree  in  variables,  
 satisfies a LDE with
F d n

Diag F
order  coeffs of degree ≈ dn, dO(n) .

 [Bostan-Lairez-S.13,Lairez16] 

an(z)y(n)(z) + … + a0(z)y(z) = 0

+ algo in O(d8n) ops.
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III. Analytic Combinatorics in 
1 variable

Sn = ∑
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s≥0

(−1)n+r+s(n
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s ) (n + r

r ) (2n − r − s
n )
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sequence

Generating function

captures some 

structure(an) 7! A(z) :=
X

n�0

anz
n

Principle

an =
1

2⇡i

I
A(z)

zn+1
dz

A(z) ⇠
z!⇢

c
⇣
1� z

⇢

⌘↵
logm 1

1� z
⇢

(↵ 62 N)

an ⇠
n!1

c ⇢�nn
�↵�1

�(�↵)
logm n

full asymptotic expansion available

1. Locate dominant singularities

2. Compute local behaviour

3. Translate into asymptotics

A 3-Step Method:

[Flajolet-Odlyzko1990]

Possible behaviours for diagonals:
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Ex: Fibonacci Numbers

= =

As n increases, the smallest 
singularities dominate.

an =
1

2⇡i

Z

�

f(z)

zn+1
dz

F1 = 1 =
1

2⇡i

I
1

1� z � z2
dz

z2

Fn =
��n�1

1 + 2�
+

�
�n�1

1 + 2�
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Classical properties of LDEs: 
1. singularities satisfy ; 
2. one can compute a basis of formal solutions at (regular) 
singular points, of the form 
 

q0(ρ) = 0

⇣
1� z

⇢

⌘↵
logm

⇣
1

1� z
⇢

⌘
(1 + · · · ), ↵ 2 Q,m 2 N.

Analytic Combinatorics for LDEs

More recently (M. Mezzarobba’s ore_algebra_analytic):  
certified analytic continuation (→  numerically).c

q0(z)A
(`)(z) + · · ·+ q`(z)A(z) = 0

convergent

local 
(at ρ)

Semi-decision

[Mezzarobba16] 11/28



Example: Apéry’s Sequences

vanishes at 0,

� = 17 + 12
p
2 ' 34.

↵ = 17� 12
p
2 ' 0.03,

Slightly more work givesµc = 0, then cn ⇡ ��n

and eventually, a proof that  is irrational.ζ(3)
[Apéry1978]

Mezzarobba’s code gives µa ' 4.55, µb ' 5.46, µc ' 0.

an =
nX

k=0

✓
n

k

◆2✓n+ k

k

◆2

, bn = an

nX

k=1

1

k3
+

nX

k=1

kX

m=1

(�1)m
�n
k

�2�n+k
k

�2

2m3
�n
m

��n+m
m

�

have generating functions that satisfy and cn = bn � ⇣(3)an

z2(z2 � 34z + 1)y000 + · · ·+ (z � 5)y = 0

In the neighborhood of ↵, all solutions behave like

analytic � µ
p
↵� z(1 + (↵� z)analytic).
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III. Analytic Combinatorics in 
several variables
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(−1)n+r+s(n
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n )
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Coefficients of Diagonals

1a. locate the critical points (algebraic condition); 

1b. find the minimal ones (semi-algebraic condition);

2. translate (easy in simple cases).

A 3-step method

F (z) =
G(z)

H(z)
ck,...,k =

✓
1

2⇡i

◆n Z

T

G(z)

H(z)

dz1 · · · dzn
(z1 · · · zn)k+1

Critical points: extrema of on |z1⋯zn | 𝒱:= {z ∣ H(z) = 0} .

Minimal ones: on the boundary of the domain of convergence.

z1
@H

@z1
= · · · = zn

@H

@zn
i.e.rank

 
@H

@z1
. . . @H

@zn
@(z1···zn)

@z1
. . . @(z1···zn)

@zn

!
 1

J from

G-D 

method

Analytic 
continuation 

from the 
rational 
function
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246 S. Melczer, B. Salvy / Journal of Symbolic Computation 103 (2021) 234–279

Fig. 2. Example 15 in three steps: critical points where the level curve of |xy| is tangent to the singular variety (left); contour 
of integration in the y-plane (middle); modulus of the integrand 1/(x(1 − x)) with a saddle point at x = 1/2 (right).

2.4. Asymptotic analysis

We first illustrate the main steps of the derivation on a simple example.

Example 15. The power series F = 1/(1 − x − y) has for diagonal

!

(
1

1 − x − y

)
=

∑

k≥0

(
2k
k

)
tk = 1√

1 − 4t
.

The asymptotic behavior of the diagonal coefficients is easily seen to be 4k/
√

kπ , e.g., by Stirling’s 
formula. The derivation of this result by ACSV starts with the integral representation

ak = 1
2π i

∫

|x|=r




1

2π i

∫

|y|=r

1
1 − x − y

dy

(xy)k+1



dx

for any 0 < r < 1/2. For a fixed x on the circle |x| = r, the integrand admits a unique pole, at y = 1 −x, 
outside of the initial circle of integration. Deforming the contour as indicated in Fig. 2 (middle) shows 
that the integral with respect to y is the sum of an integral over a contour |y| = 1/(3r) > 1/2, and 
the opposite of the residue at y = 1 − x, namely 1/(x(1 − x))k+1. As k increases, the factor (xy)−k−1

in the integral over the large circle makes it grow exponentially like (|xy|)−k = 3k . The coefficient ak
thus behaves asymptotically like

ak = 1
2π i

∮

|x|=r

dx

(x(1 − x))k+1
+ O (ck), c < 4.

This last integrand has a saddle point in the complex plane at x = 1/2 (Fig. 2, right), where the 
integral concentrates asymptotically. The classical saddle-point method (see Olver, 1974) then consists 
in: deforming the contour so that it passes through the saddle point in the direction of the imaginary 
axis; changing the variable into x = 1/2 + it and observing that the integrand behaves locally as

(x(1 − x))−k−1 = 4k+1e−4(k+1)t2
(1 + O (t3)), t → 0;

reducing the asymptotic behavior to that of a Gaussian integral, thus recovering the expected
4k/

√
kπ .

The saddle-point integral in Example 15 arose because of a minimal critical point at (1/2, 1/2). 
One aspect of the computation that is missing from this simple example is the selection of those 

Ex.: Central Binomial Coefficients
✓
2k

k

◆
:

1

1� x� y
= 1 + x+ y + 2xy + x2 + y2 + · · ·+ 6x2y2 + · · ·

(1). Critical points: 1� x� y = 0, x = y =) x = y = 1/2.

(2). Minimal ones. Easy.

⇡ 4k+1

2⇡i

Z
exp(4(k + 1)(x� 1/2)2) dx ⇡ 4kp

k⇡
.

saddle-point approx

In general, this is the difficult step.

(3). Analysis close to the minimal critical point:

ak =
1

(2⇡i)2

ZZ
1

1� x� y

dx dy

(xy)k+1
⇡ 1

2⇡i

Z
dx

(x(1� x))k+1

residue
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Smooth Minimal Critical Point
 smooth: ζ

∇H(ζ) ≠ 0Wlog ∂H/∂zn(ζ) ≠ 0

 s.t. g H( ̂z, g( ̂z)) = 0, ̂z = (z1, …, zn−1)
Implicit function 

theorem

Step 1. Residue ck = ( 1
2πi )

n−1

∮
G( ̂z, g( ̂z))

∂nH( ̂z, g( ̂z))

̂∂ ̂z
ψ( ̂z)k+1

, ψ( ̂z) := z1…zn−1g( ̂z)

ψ( ̂z) = ζ1⋯ζn + 0 ⋅ ( ̂z − ̂ζ) +
1
2

( ̂z − ̂ζ)Tℋ(ζ)( ̂z − ̂ζ) + O( | ̂z − ̂ζ |3 )
Step 2. Saddle-point analysis Hessian matrix criticalζ

Thm. Under mild conditions,


ck = ζ−kk
1 − n

2 ( (2π)(1−n)/2

(ζ3−n/ζ2
n) |ℋ(ζ) |

⋅
−G(ζ)

ζn∂H/∂zn(ζ)
+ O(k−1))

[PemantleWilson13;GaoRichmond92] 15/28



IV. Computational Aspects



1. Critical Points

Algebraic computation



Algebraic part: ``compute’’ the solutions of the system

Kronecker Representation for the Critical Points

z1
@H

@z1
= · · · = zn

@H

@zn
H(z) = 0

[Giusti-Lecerf-S.01;Schost02;SafeySchost16]

Prop. Under genericity assumptions, a probabilistic algorithm finds 

History and Background: 
see Castro, Pardo, Hägele, 

and Morais (2001)

, deg H = d max |coeff(H) | ≤ 2h, D := dn,

P(u) = 0
P′￼(u)z1 − Q1(u) = 0

⋮
P′￼(u)zn − Qn(u) = 0

in  bit ops.Õ(D3(d + h))

deg ≤ nD,

height = Õ(D(d + h))

16/28

System reduced to  
a univariate polynomial



Example (Lattice Path Model)
The number of walks from the origin taking steps  

 {NW,NE,SE,SW} and staying in the first quadrant is

Kronecker 
representation 
of the critical 
points:

ie, they are given by:

P (u) = 4u4 + 52u3 � 4339u2 + 9338u+ 403920

Qx(u) = 336u2 + 344u� 105898

Qy(u) = �160u2 + 2824u� 48982

Qt(u) = 4u3 + 39u2 � 4339u/2 + 4669/2

P (u) = 0, x =
Qx(u)

P 0(u)
, y =

Qy(u)

P 0(u)
, t =

Qt(u)

P 0(u)

Which one of these 4 is minimal?

Diag
(1 + x)(1 + y)

1 − t(1 + x2 + y2 + x2 + y2)
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Numerical Kronecker Representation

P(u) = 0
P′￼(u)z1 − Q1(u) = 0

⋮
P′￼(u)zn − Qn(u) = 0

isolating intervals/disks 
for the real/complex 

roots of P
+

degree , height 𝒟 ℋ Õ(𝒟2(𝒟 + ℋ))
all  at precision zi 2−κ Õ(𝒟3 + n(𝒟2ℋ + 𝒟κ))

(Technical) bounds on the complexity to decide whether a 
polynomial  

vanishes at some of the solutions,  
or is >0 at some of the real solutions; 


to group solutions that have the same 

Q(z)

|zi | , i = 1,…, n .
Also in a multi-degree and/or a straight-line program setting.

[Melczer-S.21] 18/28



2. Minimal Critical Points in the 
Combinatorial Case

Semi-Algebraic Problem



Combinatorial Generating Functions

Def.  is combinatorial if every coefficient is ≥ 0.F(z1, …, zn)

Prop. [PemantleWilson] In the combinatorial case, one of the 
minimal critical points has positive real coordinates.
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Testing Minimality

F =
1

H
=

1

(1� x� y)(20� x� 40y)� 1

Critical point equation

x(2x+ 41y � 21) = y(41x+ 80y � 60)

→ 4 critical points, 2 of which are real:

(x1, y1) = (0.2528, 9.9971), (x2, y2) = (0.30998, 0.54823)

x@H

@x
= y @H

@y
:

Add  and compute a Kronecker representation:H(tx, ty) = 0

P (u) = 0, x = Qx(u)
P 0(u) , y = Qy(u)

P 0(u) , t = Qt(u)
P 0(u)

Solve numerically and keep the real positive sols:

(0.31, 0.55, 0.99), (0.31, 0.55, 1.71), (0.25, 9.99, 0.09), (0.25, 0.99, 0.99)

(x2, y2) is.(x1, y1) is not minimal,
20/28



Algorithm and Complexity

Thm. If  is combinatorial, then under regularity conditions, the 
points contributing to dominant diagonal asymptotics can be 
determined in  bit operations. Each contribution has 
the form 


  can be found to precision  in  bit ops.                           

F(z)

Õ(D4(d + h))

T, C 2−κ Õ(D3d3h3 + Dκ)

This result covers the easiest cases. 
All conditions hold generically and can be checked 
within the same complexity, except combinatoriality.

Ak =
⇣
T

�k
k
(1�n)/2(2⇡)(1�n)/2

⌘
(C +O(1/k))

[Melczer-S. 21]

explicit 
algebraic 
numbers

half-integer
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Example: Apéry's sequence
1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

Kronecker representation of the critical points:

 There are two real critical points, and one is positive. After 

 testing minimality, one has proved asymptotics

P (u) = u2 � 366u� 17711

x =
2u� 1006

P 0(u)
, y = z = � 320

P 0(u)
, t = �164u+ 7108

P 0(u)

22/28



Example: Restricted Words in Factors

F (x, y) =
1� x3y6 + x3y4 + x2y4 + x2y3

1� x� y + x2y3 � x3y3 � x4y4 � x3y6 + x4y6

words over {0,1} without 10101101 or 1110101
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3. Non-Combinatorial Case



Minimal Critical Points

24/28

Consequence: With  the domain of convergence of ,𝒟 F
u ∉ 𝒟 ⇒ ∃t ∈ (0,1), z ∈ ∂𝒟 s.t.  |zj | = t |uj | , j = 1,…, n .

—> Criterion in the non-combinatorial case

(0, 0) (1, 0)

(0, 1)

•

•

•

Figure 3.1: The amoeba (left) and Newton polygon (right) of 1� x� y.

Some computational questions related to amoebas, including drawing them in two dimensions
and determining their boundary, are addressed by Theobald [236] and de Wolff [243].

Diagonals of Laurent Expansions

Given a formal Laurent series
F (z) =

X
fiz

i 2 R((z))

or convergent Laurent series
F (z) =

X
fiz

i 2 CD{z}

in some domain D, the diagonal of F is simply the univariate series

(�F )(z) =
X

k>0

fk,...,kz
k.

Given a function f(z) over the complex numbers one can compute the diagonal of f for any of
its convergent Laurent series. Thus, one must specify a domain of convergence in order to define
the diagonal �f , which by Proposition 26 can be done by specifying any point in the domain.
Unless explicitly noted, when given a function which is analytic at the origin we always consider
the diagonal of the power series expansion of the function.

Most of the results discussed above for diagonals of rational functions with power series ex-
pansions hold for all convergent Laurent series expansions of rational functions. In particular, the
diagonal of a convergent Laurent expansion is still D-finite. In fact, there is a differential operator
which annihilates all convergent Laurent expansions of a rational function, and this operator can
be found using the creative telescoping algorithm of Lairez [162]. Thus, the diagonal of any con-
vergent Laurent expansion of a rational function is still a G-function and we obtain the following
analogue of Corollary 19.

45

amoeba of 
1 − x − y

amoeba(H) := {(log |z1 | , …, log |zn | ) ∣ z ∈ ℂ*n, H(z) = 0}

The connected components of the 
complement of amoebas are convex



Split into Real & Imaginary Parts

  splits into  f(z) ∈ ℂ[z] f(x + iy) = f (R)(x, y) + i f (I)(x, y)

f (R), f (I) in ℝ[x, y]

—>  critical point equations in  real unknowns2n + 2 2n + 2

H(R)(a, b) = H(I)(a, b) = 0

aj (∂H(R)/∂xj)(a, b) + bj (∂H(R)/∂yj)(a, b) − λR = 0, j = 1,…, n

aj (∂H(I)/∂xj)(a, b) + bj (∂H(I)/∂yj)(a, b) − λI = 0, j = 1,…, n

Cauchy-Riemann

25/28



Minimal Critical Points

Add new equations:


,
H(R)(tx, ty) = H(I)(tx, ty) = 0
x2

j + y2
j = t(a2

j + b2
j ), j = 1,…, n

 eqns in 
 unknowns

n + 2
2n + 1

Needed: no real zero of  with H(x + iy)
|xj + iyj | = t |aj + ibj | , j = 1,…, n

with 0 < t < 1.

And setup a (structured) system for the critical points of

πt : (a, b, x, y, λR, λI, t) ↦ t .  eqns in 
 unknowns

4n + 4
4n + 4

Bit complexity for min crit pt selection: Õ(23nD9d5h) . Rest as 
before
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Conclusion



Comparison of Approaches

Multiple binomial sum

  Sn = ρn nαC (1 +
d1

n
+ ⋯), n → ∞

Diagonal/Integral representation

Linear differential 
equation

easy

Griffiths-Dwork

reduction

analytic combinatorics

analytic 
combinatorics 

in several 
variables


(smooth case)

Same ideal

arith. size 
Õ(d5n)

Kronecker 
repr. of 

arith. size 
Õ(dn)

 arbitrary algebraic num.

 only numerically


full asymptotic expansion

α
C

 half-integer

 explicit


leading term

α
C
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Next Steps

More ACSV (transverse multiple points; 
even more degenerate cases; diagonals of 
meromorphic functions,…);


More general sequences and integrals;


Other ways to get `explicit’ constants;


Complete, usable implementations…

The End


