Linear differential and recurrence equations viewed as data-structures

Bruno Salvy
Inria & ENS de Lyon

Leçons de Mathématiques et d'Informatique d'Aujourd'hui
Bordeaux, Mai 2015
Computer Algebra

Effective mathematics (what can we compute?)
Their complexity (how fast?)

Several million users. 30 years of algorithmic progress.

Thesis in this presentation:
linear differential and recurrence equations are a good data-structure.
Topics

Fast computation with high precision;
automatic proofs of identities;
«computation» of expansions,
of (multiple) integrals, of (multiple) sums.
The objects of study

Def. A power series is called **differentially finite (D-finite)** when it is the solution of a linear differential equation with polynomial coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan, arcsinh, hypergeometric series, Bessel functions, …

Def. A sequence is **polynomially recursive (P-recursive)** when it is the solution of a linear recurrence with polynomial coefficients.

Prop. \(f = \sum_{n=0}^{\infty} f_n z^n \) \(\text{D-finite} \Leftrightarrow f_n \text{P-recursive}. \)
Example

Coefficient of X^{20000} in $P(X) = (1+X)^{20000}(1+X+X^2)^{10000}$?

Linear differential equation of order 1
→ linear recurrence of order 2
→ unroll (cleverly).

```markdown
> P := (1+x)^(2*N)*(1+x+x^2)^N:
> deq := gfun:-holexprtodiffeq(P,y(x)):
> rec := gfun:-diffeqtorec(%,y(x),u(k)):
> p := gfun:-rectoprocp(subs(N=10000,rec),u(k)):
> p(20000);
```

23982[...10590 digits...]33952

Total time: 0.5 sec
I. Fast computation at large precision

From large integers to precise numerical values
Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). Two integers of n digits can be multiplied with $O(n \log(n) \log\log(n))$ bit operations.

Direct consequence (by Newton iteration):

inverses, square-roots, … : same cost.
Binary Splitting for linear recurrences (70’s and 80’s)

• $n!$ by divide-and-conquer:

$$n! := n \times \cdots \times \lfloor n/2\rfloor \times (\lceil n/2 \rceil + 1) \times \cdots \times 1$$

Cost: $O(n \log^3 n \log \log n)$ using FFT

• linear recurrences of order 1 reduce to

$$p!(n) := (p(n) \times \cdots \times p(\lfloor n/2 \rfloor)) \times (p(\lceil n/2 \rceil + 1) \times \cdots \times p(1))$$

• arbitrary order: same idea, same cost (matrix factorial):

ex:

$$e_n := \sum_{k=0}^{n} \frac{1}{k!}$$

satisfies a 2nd order rec, computed via

$$\begin{pmatrix} e_n \\ e_{n-1} \end{pmatrix} = \frac{1}{n} \begin{pmatrix} n+1 & -1 \\ n & 0 \end{pmatrix} \begin{pmatrix} e_{n-1} \\ e_{n-2} \end{pmatrix} = \frac{1}{n!} A(n) \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

A(n)
Numerical evaluation of solutions of LDEs

Principle:

\[f(x) = \sum_{n=0}^{N} a_n x^n + \sum_{n=N+1}^{\infty} a_n x^n \]

- fast evaluation
- good bounds

1. linear recurrence in \(N \) for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

The technique used for fast evaluation of constants like

\[
\frac{1}{\pi} = \frac{12}{C^{3/2}} \sum_{n=0}^{\infty} \frac{(-1)^n (6n)! (A + nB)}{(3n)! n!^3 C^{3n}}
\]

with \(A=13591409, \ B=545140134, \ C=640320 \).
Analytic continuation

Compute \(f(x), f'(x), \ldots, f^{(d-1)}(x) \) as new initial conditions and handle error propagation:

Ex: \(\text{erf}(\pi) \) with 15 digits:

\[
\begin{align*}
0 & \xrightarrow{200 \text{ terms}} 3.1416 & 3.1415927 & \xrightarrow{6 \text{ terms}} 3.14159265358979 \\
18 & \xrightarrow{18 \text{ terms}} & & \\
& & & \\
& & &
\end{align*}
\]

Again: computation on integers. No roundoff errors.
II. Proofs of Identities
Confinement

LDE \iff the function and all its derivatives are confined in a finite dimensional vector space

\Rightarrow the sum and product of solutions of LDEs satisfy LDEs

\Rightarrow same property for P-recursive sequences
Proof technique

> series(sin(x)^2+cos(x)^2-1,x,4);

O(x^4)

Proofs of non-linear identities by linear algebra!

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: \(y'' + y = 0 \);
2. their squares and their sum satisfy a 3rd order LDE;
3. the constant -1 satisfies \(y' = 0 \);
4. thus \(\sin^2 + \cos^2 - 1 \) satisfies a LDE of order at most 4;
5. Cauchy’s theorem concludes.
Example: Mehler’s identity for Hermite polynomials

\[\sum_{n=0}^{\infty} H_n(x)H_n(y) \frac{u^n}{n!} = \exp \left(\frac{4u(xy-u(x^2+y^2))}{1-4u^2} \right) \frac{1}{\sqrt{1-4u^2}} \]

1. Definition of Hermite polynomials: recurrence of order 2;

2. Product by linear algebra: \(H_{n+k}(x)H_{n+k}(y)/(n+k)! \), \(k \in \mathbb{N} \) generated over \(\mathbb{Q}(x,n) \) by

\[
\begin{align*}
\frac{H_n(x)H_n(y)}{n!}, & \quad \frac{H_{n+1}(x)H_n(y)}{n!}, & \quad \frac{H_n(x)H_{n+1}(y)}{n!}, & \quad \frac{H_{n+1}(x)H_{n+1}(y)}{n!}
\end{align*}
\]

\(\rightarrow \) recurrence of order at most 4;

3. Translate into differential equation.
Dynamic Dictionary of Mathematical Functions

- User need
- Recent algorithmic progress
- Maths on the web

http://ddmf.msr-inria.inria.fr/
Welcome to this interactive site on Mathematical Functions, with properties, truncated expansions, numerical evaluations, plots, and more. The functions currently presented are elementary functions and special functions of a single variable. More functions — special functions with parameters, orthogonal polynomials, sequences — will be added with the project advances.

This is release 1.9.1 of DDMF
Select a special function from the list

What's new? The main changes in this release 1.9.1, dated May 2013, are:
- Proofs related to Taylor polynomial approximations.

Release history.

More on the project:
- Help on selecting and configuring the mathematical rendering
- DDMF developers list
- Motivation of the project
- Article on the project at ICMS'2010
- Source code used to generate these pages
- List of related projects
Guess & prove continued fractions

1. Differential equation produces first terms (easy):

\[
\arctan x = \frac{x}{1 + \frac{1}{3}x^2 \frac{1}{1 + \frac{4}{15}x^2 \frac{1}{1 + \frac{9}{35}x^2 \frac{1}{1 + \cdots}}} \]

2. Guess a formula (easy): \(a_n = \frac{n^2}{4n^2 - 1} \)

3. Prove that the CF with these \(a_n \) satisfies the differential equation.

No human intervention needed.
Automatic Proof of the guessed CF

\[
\text{arctan} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots + \frac{x^{2n+1}}{2n+1} + \cdots
\]

- **Aim**: RHS satisfies \((x^2+1)y’-1=0\);
- Convergents \(P_n/Q_n\) where \(P_n\) and \(Q_n\) satisfy the LRE \(u_n=u_{n-1}+a_nu_{n-2}\) (and \(Q_n(0)\neq0\));
- Define \(H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)’-1)\);
- \(H_n\) is a polynomial in \(P_n, Q_n\) and their derivatives;
- therefore, it satisfies a LRE that can be computed;
- from it, \(H_n=O(x^n)\) visible
- from there, \((P_n/Q_n)’-1/(1+x^2)=O(x^n)\) too;
- **conclude** \(P_n/Q_n\to\text{arctan} by integrating.\)
III. Ore Polynomials
From equations to operators

<table>
<thead>
<tr>
<th>D_x ↔ d/dx</th>
<th>S_n ↔ $(n\mapsto n+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ↔ mult by x</td>
<td>n ↔ mult by n</td>
</tr>
<tr>
<td>product ↔ composition</td>
<td>product ↔ composition</td>
</tr>
<tr>
<td>$D_xx=xD_x+1$</td>
<td>$S_nn=(n+1)S_n$</td>
</tr>
</tbody>
</table>

Taylor morphism: $D_x \mapsto (n+1)S_n$; $x \mapsto S_n^{-1}$

produces linear recurrence from LDE
Framework: Ore polynomials

\[(fg)' = f'g + fg', \quad S_n(fng_n) = f_{n+1}S_n(g_n), \quad \Delta_n(fng_n) = f_{n+1}\Delta_n(g_n) + \Delta_n(f_n)g_n,\]

and many more (e.g., q-analogues) are captured by \(\mathbb{A}\langle \partial \rangle\) (\(\mathbb{A}\) integral domain) with commutation

\[\partial a = \sigma(a)\partial + \delta(a)\]

\(\sigma\) a ring morphism, \(\delta\) a \(\sigma\)-derivation \((\delta(ab) = \sigma(a)\delta(b) + \delta(a)b)\).

Main property: \(A, B\) in \(\mathbb{A}\langle \partial \rangle\), then \(\deg AB = \deg A + \deg B\).

Consequence 1: (non-commutative) Euclidean division

Consequence 2: (non-commutative) Euclidean algorithm
GCRD & LCLM

greatest common right divisor & least common left multiple

GCRD\((A,B)\): maximal operator whose solutions are common to \(A\) and \(B\).
LCLM\((A,B)\): minimal operator having the solutions of \(A\) and \(B\) for solutions.

Example: closure by sum.

Computation: Euclidean algorithm or linear algebra.
Reduction of order

Input: a (large) linear recurrence equation + init. cond

Output: a factor annihilating *this* solution

- Step 1: use the recurrence and its initial conditions to compute a large number of terms;

- Step 2: *guess* a linear recurrence equation annihilating this sequence (linear algebra);

- Step 3: take the *gcrd* of this operator and the initial one;

- Step 3: *prove* that this factor annihilates the solution by checking sufficiently many initial conditions.
Example from a continued fraction expansion

\[P_k = a_k x^2 P_{k-2} + P_{k-1}, \quad a_k = \begin{cases} \frac{2k}{(2k+1)(2k+3)}, & k \text{ even,} \\ \frac{-2(k+2)}{(2k+1)(2k+3)}, & k \text{ odd.} \end{cases} \]

Aim: a recurrence for all \(k \).

- Step 1: use both recurrences to find a relation between \(P_k, P_{k+2}, P_{k+4} \) for even \(k \) and one for odd \(k \);

- Step 2: compute their LCLM (order 8);

- Step 3: use the initial conditions to reduce (order 4).
Chebyshev expansions

\[
z = \frac{1}{3} z^3 + \frac{1}{5} z^5 + \cdots
\]

\[
2(\sqrt{2} + 1) \left(\frac{T_1(x)}{(2\sqrt{2} + 3)} - \frac{T_3(x)}{3(2\sqrt{2} + 3)^2} + \frac{T_5(x)}{5(2\sqrt{2} + 3)^3} + \cdots \right)
\]
Ore fractions

Generalize commutative case:

\[R = Q^{-1}P \] with \(P \) & \(Q \) operators.

\[B^{-1}A = D^{-1}C \] when \(bA = dC \) with \(bB = dD = \text{LCLM}(B,D) \).

Algorithms for sum and product:

\[B^{-1}A + D^{-1}C = \text{LCLM}(B,D)^{-1}(bA + dC), \] with \(bB = dD = \text{LCLM}(B,D) \)

\[B^{-1}AD^{-1}C = (aB)^{-1}dC, \] with \(aA = dD = \text{LCLM}(A,D) \).
Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor

\[
x^{n+1} = x \cdot x^n \quad \leftrightarrow \quad x \quad \mapsto \quad X := S^{-1}
\]

\[
(x^n)' = nx^{n-1} \quad \leftrightarrow \quad d/dx \quad \mapsto \quad D := (n+1)S
\]

Chebyshev

\[
2xT_n(x) = T_{n+1}(x) + T_{n-1}(x)
\]

\[
\leftrightarrow \quad x \quad \mapsto \quad X := (S + S^{-1})/2
\]

\[
2(1-x^2)T_n'(x) = -nT_{n+1}(x) + nT_{n-1}(x)
\]

\[
\leftrightarrow \quad d/dx \quad \mapsto \quad D := (1-X^2)^{-1}n(S-S^{-1})/2.
\]

Prop. If \(y \) is a solution of \(L(x,d/dx) \), then its Chebyshev coefficients annihilate the numerator of \(L(X,D) \).
IV. Systems of equations
Example: Contiguity of Hypergeometric Series

\[F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} z^n, \quad (x)_n := x(x+1) \cdots (x+n-1). \]

\[
\frac{u_{a,n+1}}{u_{a,n}} = \frac{(a+n)(b+n)}{(c+n)(n+1)} \rightarrow z(1-z)F'' + (c - (a+b+1)z)F' - abF = 0,
\]

\[
\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \rightarrow S_a F := F(a+1, b; c; z) = \frac{z}{a} F' + F.
\]

Gauss 1812: contiguity relation.

\[\text{dim}=2 \Rightarrow S_a^2 F, S_a F, F \text{ linearly dependent} \]

(coordinates in \(\mathbb{Q}(a,b,c,z) \))

\[(a + 1)(z - 1)S_a^2 F + ((b - a - 1)z + 2 - c + 2a)S_a F + (c - a - 1)F = 0 \]
Ore Algebras

\[\mathcal{O} := \mathbb{K}(x_1, \ldots, x_r)\langle \partial_1, \ldots, \partial_r \rangle := \mathbb{K}(x_1, \ldots, x_r)\langle \partial_1 \rangle \cdots \langle \partial_r \rangle, \]

with commuting \(\partial_i \)'s and for \(i \neq j, \delta_i(\partial_j) = 0 \) and \(\sigma_i(\partial_j) = \partial_j. \)

Def. LM (leading monomial) on next slide.

Main property: \(A, B \) in \(\mathcal{O} \), then \(\text{LM}(AB) = \text{LM}(A)\text{LM}(B) \).

Consequence: (non-commutative) Gröbner bases

Gröbner bases as a data-structure to encode special functions
Gröbner Bases

1. **Monomial ordering**: order on \(\mathbb{N}^k \), compatible with +, 0 minimal.
2. **Leading monomial** of a polynomial: the largest one.
3. **Gröbner basis** of a (left) ideal \(I \): corners of stairs.
4. **Quotient** mod \(I \):
 basis below the stairs (Vect\{\(\partial^\alpha f \}\)).
5. **Reduction** of \(P \):
 Rewrite \(P \) mod \(I \) on this basis.
6. **Dimension**:
 « size » of the quotient.
7. **D-finiteness**: dimension 0.

An access to (finite-dimensional) vector spaces.
Closure Properties

Proposition.
\[
\dim \text{ann}(f + g) \leq \max(\dim \text{ann } f, \dim \text{ann } g),
\]
\[
\dim \text{ann}(fg) \leq \dim \text{ann } f + \dim \text{ann } g,
\]
\[
\dim \text{ann}(\partial f) \leq \dim \text{ann } f.
\]

Algorithms by linear algebra

simple definitions → data-structures for more complicated functions
V. Sums and Integrals
Examples

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k} \sum_{j=0}^{k} \binom{k}{j}
\]

\[
\sum_{j,k} (-1)^{j+k} \binom{j+k}{k+1} \binom{r}{j} \binom{n}{k} \binom{s+n-j-k}{m-j} = (-1)^l \binom{n+r}{n+l} \binom{s-r}{m-n-l}
\]

\[
\int_0^{+\infty} x J_1(ax) l_1(ax) Y_0(x) K_0(x) \, dx = -\frac{\ln(1-a^4)}{2\pi a^2}
\]

\[
\frac{1}{2\pi i} \int \frac{(1 + 2xy + 4y^2) \exp \left(\frac{4x^2y^2}{1+4y^2}\right)}{y^{n+1}(1+4y^2)^{\frac{3}{2}}} \, dy = \frac{H_n(x)}{[n/2]!}
\]

\[
\sum_{k=0}^{n} \frac{q^{k^2}}{(q; q)_k(q; q)_{n-k}} = \sum_{k=-n}^{n} \frac{(-1)^k q^{(5k^2-k)/2}}{(q; q)_{n-k}(q; q)_{n+k}}
\]

Aims:

1. Prove them automatically
2. Find the rhs given the lhs

Note: at least one free variable
Creative telescoping

\[I(x) = \int f(x, t) \, dt = ? \quad \text{or} \quad U(n) = \sum_{k} u(n, k) = ? \]

Input: equations
(differential for \(f \) or recurrence for \(u \)).

Output: equations for the sum or the integral.

Example:

\[
\begin{align*}
u(n, k) &= \binom{n}{k} \text{ def. by } \left\{ \begin{array}{l}
\binom{n+1}{k} = \frac{n+1}{n+1-k} \binom{n}{k}, \\
\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}
\end{array} \right. \\
S(n+1) &= \sum_{k} \binom{n+1}{k} = \sum_{k} \binom{n+1}{k} - \binom{n+1}{k+1} + \binom{n}{k+1} - \binom{n}{k} + 2 \binom{n}{k} = 2S(n).
\end{align*}
\]

IF one knows \(A(n, S_n) \) and \(B(n, k, S_n, S_k) \) such that

\[
(A(n, S_n) + \Delta B(n, k, S_n, S_k)) \cdot u(n, k) = 0,
\]

then the sum telescopes, leading to \(A(n, S_n) \cdot U(n) = 0 \).
Creative Telescoping

\[I(x) = \int f(x, t) \, dt = ? \]

IF one knows \(A(x, \partial_x) \) and \(B(x, t, \partial_x, \partial_t) \) such that

\[
(A(x, \partial_x) + \partial_t B(x, t, \partial_x, \partial_t)) \cdot f(x, t) = 0,
\]

then the integral « telescopes », leading to \(A(x, \partial_x) \cdot I(x) = 0 \).

Then I come along and try differentiating under the integral sign, and often it worked. So I got a great reputation for doing integrals.

Richard P. Feynman 1985

Method: integration (summation) by parts and differentiation (difference) under the integral (sum) sign
Telescoping Ideal

\[T_t(f) := \left(\text{Ann } f + \partial_t \mathbb{Q}(x, t) \langle \partial_x, \partial_t \rangle \right) \cap \mathbb{Q}(x) \langle \partial_x \rangle. \]

- hypergeometric summation:
 \(\text{dim}=1 + \text{param. Gosper.} \)
 \[\text{[Zeilberger]} \]

- holonomy: restrict int. by parts to \(\mathbb{Q}(x) \langle \partial_x, \partial_t \rangle \)
 and Gröbner bases.
 \[\text{[Wilf-Zeilberger, also Sister Celine]} \]

- finite dim, Ore algebras & GB \[\text{[Chyzak]} \]

- infinite dim & GB

- rational \(f \) and restrict to \(\mathbb{Q}(x)[t, 1/\text{den } f] \langle \partial_x, \partial_t \rangle \) in very good complexity.
Chyzak’s Algorithm

\[T_t(f) := \left(\text{Ann } f + \partial_t Q(x, t) \langle \partial_x, \partial_t \rangle \right) \cap Q(x) \langle \partial_x \rangle. \]

Input: a Gröbner basis \(G \) for \(\text{Ann } f \) in \(\mathbb{A} = \mathbb{Q}(x, t) \langle \partial_x, \partial_t \rangle \)

Output: \(P \) in \(\mathbb{Q}(x) \langle \partial_x \rangle \) and \(Q \) in \(\mathbb{A} \), reduced wrt \(G \) and such that \((P + \partial_t Q)f = 0 \).

For \(r = 1, 2, 3, \ldots \)

1. use indeterminate coefficients to define

\[Q = \sum_{(i,j) \text{ below stairs}} q_{i,j}(x, t) \partial_x^i \partial_t^j, \quad P = \sum_{|\alpha| \leq r} p_\alpha(x) \partial_x^\alpha. \]

2. reduce \(P + \partial_t Q \) using \(G \), leading to a 1st order system for \(q_{i,j}(x, t) \) and \(p_\alpha(x) \);

3. stop if a rational solution is found.
Examples of applications

- **Hypergeometric**: binomial sums, hypergeometric series;
 \[\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3 = (-1)^n \frac{(3n)!}{n!^3} \]

- **Higher dimension**: classical orthogonal polynomials, special functions like Bessel, Airy, Struve, Weber, Anger, hypergeometric and generalized hypergeometric,…
 \[J_0(z) = \frac{2}{\pi} \int_0^1 \frac{\cos(zt)}{\sqrt{1 - t^2}} \, dt \]

- **Infinite dimension**: Bernoulli, Stirling or Eulerian numbers, incomplete Gamma function,…
 \[\int_0^\infty \exp(-xy) \Gamma(n, x) \, dx = \frac{\Gamma(n)}{y} \left(1 - \frac{1}{(y + 1)^n} \right) \]
VI. Faster Creative Telescoping
Certificates are big

\[C_n := \sum_{r,s} (-1)^{n+r+s} \binom{n}{r} \binom{n}{s} \binom{n+s}{s} \binom{n+r}{r} \binom{2n-r-s}{n} f_{n,r,s} \]

\[(n + 2)^3 C_{n+2} - 2(2n + 3)(3n^2 + 9n + 7)C_{n+1} - (4n + 3)(4n + 4)(4n + 5)C_n = 180 \text{ kB} \simeq 2 \text{ pages} \]

\[l(z) = \int \frac{(1 + t_3)^2 dt_1 dt_2 dt_3}{t_1 t_2 t_3 (1 + t_3 (1 + t_1))(1 + t_3 (1 + t_2)) + z(1 + t_1)(1 + t_2)(1 + t_3)^4} \]

\[z^2(4z + 1)(16z - 1)l'''(z) + 3z(128z^2 + 18z - 1)l''(z) + (444z^2 + 40z - 1)l'(z) + 2(30z + 1)l(z) = 1080 \text{ kB} \]

\[\simeq 12 \text{ pages} \]

Next, in \[T_t(f) := \left(\text{Ann } f + \partial_t \langle Q(x, t) \mid \partial_x, \partial_t \rangle \right) \cap \langle Q(x) \mid \partial_x \rangle . \]

we restrict to rational \(f \) and \(\partial_t \mathcal{Q}(x)[t, 1/\text{den } f] \langle \partial_x, \partial_t \rangle . \]
Bivariante integrals by Hermite reduction

\[I(t) = \int \frac{P(t, x)}{Q^m(t, x)} \, dx \]

If \(m=1 \), Euclidean division: \(P=aQ+r \), \(\deg_x r < \deg_x Q \)

\[\frac{P}{Q} = \frac{r}{Q} + \partial_x \int a \]

Def. Reduced form: \[\left[\frac{P}{Q} \right] := \frac{r}{Q} \]

If \(m>1 \), Bézout identity and integration by parts

\[P = uQ + v \partial_x Q \quad \rightarrow \quad \frac{P}{Q^m} = \frac{u + \frac{\partial_x v}{m-1}}{Q^{m-1}} + \partial_x \frac{v/(1-m)}{Q^{m-1}} \]

Algorithm: \(R_0 := [P/Q^m] \)
for \(i=1, 2, \ldots \) do \(R_i := [\partial_t R_{i-1}] \) when there is a relation \(c_0(t)R_0 + \ldots + c_i(t)R_i = 0 \) return \(c_0 + \ldots + c_i \partial_t^i \)
More variables: Griffiths-Dwork reduction

\[I(t) = \int \frac{P(t, x)}{Q^m(t, x)} \, dx \quad \text{Q square-free} \]
\[\text{Int. over a cycle where } Q \neq 0. \]

1. Control degrees by homogenizing \((x_1, \ldots, x_n) \mapsto (x_0, \ldots, x_n)\)

2. If \(m=1\), \([P/Q] := P/Q\)

3. If \(m > 1\), reduce modulo Jacobian ideal \(J := \langle \partial_0 Q, \ldots, \partial_n Q \rangle\)

\[
\begin{align*}
P &= r + v_0 \partial_0 Q + \cdots + v_n \partial_n Q \\
\frac{P}{Q^m} &= \frac{r}{Q^m} - \frac{1}{m-1} \left(\partial_0 \frac{v_0}{Q^{m-1}} + \cdots + \partial_n \frac{v_n}{Q^{m-1}} \right) + \frac{1}{m-1} \frac{\partial_0 v_0 + \cdots + \partial_n v_n}{Q^{m-1}} \\
\left[\frac{P}{Q^m} \right] &= \frac{r}{Q^m} + [A_{m-1}]
\end{align*}
\]

Thm. [Griffiths] In the regular case \((Q(t)[x]/J)_{\text{finite dim}},\) if \(R=P/Q^m\) hom of degree \(-n-1\), \([R] = 0 \iff \int R \, dx = 0\).

→ SAME ALGORITHM.
Size and complexity

\[I(t) = \int \frac{P(t, x)}{Q^m(t, x)} \, dx \]

\[\in \mathbb{Q}(t, x) \]

\[N := \deg_x Q, \quad d_t := \max(\deg_t Q, \deg_t P) \]

Thm. A linear differential equation for \(I(t) \) can be computed in \(O(e^{3nN^8d_t}) \) operations in \(\mathbb{Q} \).

It has order \(\leq N^n \) and degree \(O(e^nN^{3n}d_t) \).

Note: generically, the certificate has at least \(N^{n^2/2} \) monomials.

This has consequences for multiple binomial sums.
Conclusion

• Linear differential equations and recurrences are a great data-structure;
• Numerous algorithms have been developed in computer algebra;
• Efficient code is available;
• More is to be found (certificate-free algorithms, diagonals,...)